Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Juan Sun x
Clear All Modify Search
Restricted access

Wanchen Dou, Ning Lin, Wenbin Ma, Yi Yang, Huijuan Zhu, Juan Sun, Wei Lian, Zhong Yang, Wuyi Li and Renzhi Wang

✓The McCune–Albright syndrome (MAS) is characterized by a clinical triad of polyostotic fibrous dysplasia, café-au-lait hyperpigmented macules, and hypersecretory endocrinopathies. Acromegaly is an uncommon manifestation of the endocrine disturbance associated with MAS, and the role of surgery in managing these cases has been a topic of debate. The authors present the case of a 35-year-old man with MAS who was also diagnosed with acromegaly, hyperprolactinemia, and pituitary macroadenoma. The patient had an 18-year history of fibrous dysplasia involving the right frontal bone and ribs as well as multiple endocrinopathies, but no cutaneous hyperpigmented macules. An oral glucose tolerance test demonstrated partial suppression of plasma levels of growth hormone (GH). The patient underwent transsphenoidal resection of the pituitary tumor, performed with assistance of neuronavigation, and tolerated the procedure well. After the surgery, both prolactin and GH levels returned to normal. These results suggest that neuronavigation-assisted transsphenoidal surgery can safely remove pituitary adenomas associated with MAS and successfully treat the underlying endocrine abnormalities.

Restricted access

Huy Q. Truong, Xicai Sun, Emrah Celtikci, Hamid Borghei-Razavi, Eric W. Wang, Carl H. Snyderman, Paul A. Gardner and Juan C. Fernandez-Miranda

OBJECTIVE

Multiple approaches have been designed to reach the medial middle fossa (for lesions in Meckel’s cave, in particular), but an anterior approach through the greater wing of the sphenoid (transalisphenoid) has not been explored. In this study, the authors sought to assess the feasibility of and define the anatomical landmarks for an endoscopic anterior transmaxillary transalisphenoid (EATT) approach to Meckel’s cave and the middle cranial fossa.

METHODS

Endoscopic dissection was performed on 5 cadaver heads injected intravascularly with colored silicone bilaterally to develop the approach and define surgical landmarks. The authors then used this approach in 2 patients with tumors that involved Meckel’s cave and provide their illustrative clinical case reports.

RESULTS

The EATT approach is divided into the following 4 stages: 1) entry into the maxillary sinus, 2) exposure of the greater wing of the sphenoid, 3) exposure of the medial middle fossa, and 4) exposure of Meckel’s cave and lateral wall of the cavernous sinus. The approach provided excellent surgical access to the anterior and lateral portions of Meckel’s cave and offered the possibility of expanding into the infratemporal fossa and lateral middle fossa and, in combination with an endonasal transpterygoid approach, accessing the anteromedial aspect of Meckel’s cave.

CONCLUSIONS

The EATT approach to Meckel’s cave and the middle cranial fossa is technically feasible and confers certain advantages in specific clinical situations. The approach might complement current surgical approaches for lesions of Meckel’s cave and could be ideal for lesions that are lateral to the trigeminal ganglion in Meckel’s cave or extend from the maxillary sinus, infratemporal fossa, or pterygopalatine fossa into the middle cranial fossa, Meckel’s cave, and cavernous sinus, such as schwannomas, meningiomas, and sinonasal tumors and perineural spread of cutaneous malignancy.

Restricted access

Yuan Wang, Bolin Liu, Tianzhi Zhao, Binfang Zhao, Daihua Yu, Xue Jiang, Lin Ye, Lanfu Zhao, Wenhai Lv, Yufu Zhang, Tao Zheng, Yafei Xue, Lei Chen, Eric Sankey, Long Chen, Yingxi Wu, Mingjuan Li, Lin Ma, Zhengmin Li, Ruigang Li, Juan Li, Jing Yan, Shasha Wang, Hui Zhao, Xude Sun, Guodong Gao, Yan Qu and Shiming He

OBJECTIVE

Although enhanced recovery after surgery (ERAS) programs have gained acceptance in various surgical specialties, no established neurosurgical ERAS protocol for patients undergoing elective craniotomy has been reported in the literature. Here, the authors describe the design, implementation, safety, and efficacy of a novel neurosurgical ERAS protocol for elective craniotomy in a tertiary care medical center located in China.

METHODS

A multidisciplinary neurosurgical ERAS protocol for elective craniotomy was developed based on the best available evidence. A total of 140 patients undergoing elective craniotomy between October 2016 and May 2017 were enrolled in a randomized clinical trial comparing this novel protocol to conventional neurosurgical perioperative management. The primary endpoint of this study was the postoperative hospital length of stay (LOS). Postoperative morbidity, perioperative complications, postoperative pain scores, postoperative nausea and vomiting, duration of urinary catheterization, time to first solid meal, and patient satisfaction were secondary endpoints.

RESULTS

The median postoperative hospital LOS (4 days) was significantly shorter with the incorporation of the ERAS protocol than that with conventional perioperative management (7 days, p < 0.0001). No 30-day readmission or reoperation occurred in either group. More patients in the ERAS group reported mild pain (visual analog scale score 1–3) on postoperative day 1 than those in the control group (79% vs. 33%, OR 7.49, 95% CI 3.51–15.99, p < 0.0001). Similarly, more patients in the ERAS group had a shortened duration of pain (1–2 days; 53% vs. 17%, OR 0.64, 95% CI 0.29–1.37, p = 0.0001). The urinary catheter was removed within 6 hours after surgery in 74% patients in the ERAS group (OR 400.1, 95% CI 23.56–6796, p < 0.0001). The time to first oral liquid intake was a median of 8 hours in the ERAS group compared to 11 hours in the control group (p < 0.0001), and solid food intake occurred at a median of 24 hours in the ERAS group compared to 72 hours in the control group (p < 0.0001).

CONCLUSIONS

This multidisciplinary, evidence-based, neurosurgical ERAS protocol for elective craniotomy appears to have significant benefits over conventional perioperative management. Implementation of ERAS is associated with a significant reduction in the postoperative hospital stay and an acceleration in recovery, without increasing complication rates related to elective craniotomy. Further evaluation of this protocol in large multicenter studies is warranted.

Clinical trial registration no.: ChiCTR-INR-16009662 (chictr.org.cn)

Restricted access

Huy Q. Truong, Edinson Najera, Robert Zanabria-Ortiz, Emrah Celtikci, Xicai Sun, Hamid Borghei-Razavi, Paul A. Gardner and Juan C. Fernandez-Miranda

OBJECTIVE

The endoscopic endonasal approach has become a routine corridor to the suprasellar region. The superior hypophyseal arteries (SHAs) are intimately related to lesions in the suprasellar space, such as craniopharyngiomas and meningiomas. Here the authors investigate the surgical anatomy and variations of the SHA from the endoscopic endonasal perspective.

METHODS

Thirty anatomical specimens with vascular injection were used for endoscopic endonasal dissection. The number of SHAs and their origin, course, branching, anastomoses, and areas of supply were collected and analyzed.

RESULTS

A total of 110 SHAs arising from 60 internal carotid arteries (ICAs), or 1.83 SHAs per ICA (range 0–3), were found. The most proximal SHA always ran in the preinfundibular space and provided the major blood supply to the infundibulum, optic chiasm, and proximal optic nerve; it was defined as the primary SHA (pSHA). The more distal SHA(s), present in 78.3% of sides, ran in the retroinfundibular space and supplied the stalk and may also supply the tuber cinereum and optic tracts. In the two sides (3.3%) in which no SHA was present, the territory was covered by a pair of infundibular arteries originating from the posterior communicating artery. Two-thirds of the pSHAs originated proximal to the distal dural ring; half of these arose from the carotid cave portion of the ICA, whereas the other half originated proximal to the cave. Four branching patterns of the pSHA were recognized, with the most common pattern (41.7%) consisting of three or more branches with a tree-like pattern. Descending branches were absent in 25% of cases. Preinfundibular anastomoses between pSHAs were found in all specimens. Anastomoses between the pSHA and the secondary SHA (sSHA) or the infundibular arteries were found in 75% cases.

CONCLUSIONS

The first SHA almost always supplies the infundibulum, optic chiasm, and proximal optic nerve and represents the pSHA. Compromising this artery can cause a visual deficit. Unilateral injury to the pSHA is less likely to cause an endocrine deficit given the artery’s abundant anastomoses. A detailed understanding of the surgical anatomy of the SHA and its many variations may help surgeons when approaching challenging lesions in the suprasellar region.

Restricted access

Wei-Hsin Wang, Stefan Lieber, Roger Neves Mathias, Xicai Sun, Paul A. Gardner, Carl H. Snyderman, Eric W. Wang and Juan C. Fernandez-Miranda

OBJECTIVE

The foramen lacerum is a relevant skull base structure that has been neglected for many years. From the endoscopic endonasal perspective, the foramen lacerum is a key structure due to its location at the crossroad between the sagittal and coronal planes. The objective of this study was to provide a detailed investigation of the surgical anatomy of the foramen lacerum and its adjacent structures based on anatomical dissections and imaging studies, propose several relevant key surgical landmarks, and demonstrate the surgical technique for its full exposure with several illustrative cases.

METHODS

Ten colored silicone-injected anatomical specimens were dissected using a transpterygoid approach to the foramen lacerum region in a stepwise manner. Five similar specimens were used for a comparative transcranial approach. The osseous anatomy was examined in 32 high-resolution multislice CT studies and 1 disarticulated skull. Representative cases were selected to illustrate the application of the findings.

RESULTS

The pterygosphenoidal fissure is the synchondrosis between the lacerum process of the pterygoid bone and the floor of the sphenoid bone. It constantly converges with the posterior end of the vidian canal at a 45° angle, and its posterolateral end points directly to the lacerum foramen. The pterygoid tubercle separates the vidian canal from the pterygosphenoidal fissure, and forms the anterior wall of the lower part of the foramen lacerum. The lingual process, which forms the lateral wall of the foramen lacerum, was identified in 53 of 64 sides and featured an average height of 5 mm. The mandibular strut separates the foramen lacerum from the foramen ovale and had an average width of 5 mm.

CONCLUSIONS

This study provides relevant surgical landmarks and a systematic approach to the foramen lacerum by defining anterior, medial, lateral, and inferior walls that may facilitate its safe exposure for effective removal of lesions while minimizing the risk of injury to the internal carotid artery.