Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Joshua Katz x
  • Refine by Access: all x
Clear All Modify Search
Free access

Variation in pediatric stereoelectroencephalography practice among pediatric neurosurgeons in the United States: survey results

Benjamin C. Kennedy, Joshua Katz, Jacob Lepard, and Jeffrey P. Blount

OBJECTIVE

Stereoelectroencephalography (SEEG) has become widespread in the United States during the past decade. Many pediatric neurosurgeons practicing SEEG may not have had experience with this technique during their formal training, and the literature is mostly limited to single-center series. As a result, implementation of this relatively new technique may vary at different institutions. The authors hypothesized that aspects of SEEG experience, techniques, and outcomes would vary widely among programs across the country.

METHODS

An electronic survey with 35 questions addressing the categories of training and experience, technique, electrode locations, and outcomes was sent to 128 pediatric epilepsy surgeons who were potential SEEG users.

RESULTS

Sixty-one pediatric fellowship-trained epilepsy surgeons in the United States responded to the survey. Eighty-nine percent were actively using SEEG in their practice. Seventy-two percent of SEEG programs were in existence for less than 5 years, and 68% were using SEEG for > 70% of their invasive monitoring. Surgeons at higher-volume centers operated on younger patients (p < 0.001). Most surgeons (70%) spent 1–3 hours per case planning electrode trajectories. Two-thirds of respondents reported a median implant duration of 5–7 days, but 16% reported never having an implant duration > 5 days, and 16% reported having had implants stay in place for > 4 weeks. The median response for the median number of electrodes initially implanted was 12 electrodes, although 19% of respondents reported median implants of 5–8 electrodes and 17% reported median implants of 15–18 electrodes. Having a higher volume of SEEG cases per year was associated with a higher median number of electrodes implanted (p < 0.001). Most surgeons found SEEG helpful in defining an epileptic network and reported that most of their SEEG patients undergo focal surgical treatment.

CONCLUSIONS

SEEG has been embraced by the pediatric epilepsy surgery community. Higher case volume is correlated with a tendency to place more electrodes and operate on younger patients. For most parameters addressed in the survey, responses from surgeons clustered around a norm, though additional findings of substantial variations highlight differences in implementation and philosophy among pediatric epilepsy programs.

Free access

Stereoelectroencephalography before 2 years of age

Raphia K. Rahman, Samuel B. Tomlinson, Joshua Katz, Kathleen Galligan, Peter J. Madsen, Alexander M. Tucker, Sudha Kilaru Kessler, and Benjamin C. Kennedy

OBJECTIVE

Stereoelectroencephalography (SEEG) is a widely used technique for localizing seizure onset zones prior to resection. However, its use has traditionally been avoided in children under 2 years of age because of concerns regarding pin fixation in the immature skull, intraoperative and postoperative electrode bolt security, and stereotactic registration accuracy. In this retrospective study, the authors describe their experience using SEEG in patients younger than 2 years of age, with a focus on the procedure’s safety, feasibility, and accuracy as well as surgical outcomes.

METHODS

A retrospective review of children under 2 years of age who had undergone SEEG while at Children’s Hospital of Philadelphia between November 2017 and July 2021 was performed. Data on clinical characteristics, surgical procedure, imaging results, electrode accuracy measurements, and postoperative outcomes were examined.

RESULTS

Five patients younger than 2 years of age underwent SEEG during the study period (median age 20 months, range 17–23 months). The mean age at seizure onset was 9 months. Developmental delay was present in all patients, and epilepsy-associated genetic diagnoses included tuberous sclerosis (n = 1), KAT6B (n = 1), and NPRL3 (n = 1). Cortical lesions included tubers from tuberous sclerosis (n = 1), mesial temporal sclerosis (n = 1), and cortical dysplasia (n = 3). The mean number of placed electrodes was 11 (range 6–20 electrodes). Bilateral electrodes were placed in 1 patient. Seizure onset zones were identified in all cases. There were no SEEG-related complications, including skull fracture, electrode misplacement, hemorrhage, infection, cerebrospinal fluid leakage, electrode pullout, neurological deficit, or death. The mean target point error for all electrodes was 1.0 mm. All patients proceeded to resective surgery, with a mean follow-up of 21 months (range 8–53 months). All patients attained a favorable epilepsy outcome, including Engel class IA (n = 2), IC (n = 1), ID (n = 1), and IIA (n = 1).

CONCLUSIONS

SEEG can be safely, accurately, and effectively utilized in children under age 2 with good postoperative outcomes using standard SEEG equipment. With minimal modification, this procedure is feasible in those with immature skulls and guides the epilepsy team’s decision-making for early and optimal treatment of refractory epilepsy through effective localization of seizure onset zones.