Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Joshua D. Burks x
Clear All Modify Search
Free access

Joshua Zeidenberg, S. Shelby Burks, Jean Jose, Ty K. Subhawong and Allan D. Levi

Ultrasound technology continues to improve with better image resolution and availability. Its use in evaluating peripheral nerve lesions is increasing. The current review focuses on the utility of ultrasound in traumatic injuries. In this report, the authors present 4 illustrative cases in which high-resolution ultrasound dramatically enhanced the anatomical understanding and surgical planning of traumatic peripheral nerve lesions. Cases include a lacerating injury of the sciatic nerve at the popliteal fossa, a femoral nerve injury from a pseudoaneurysm, an ulnar nerve neuroma after attempted repair with a conduit, and, finally, a spinal accessory nerve injury after biopsy of a supraclavicular fossa lesion. Preoperative ultrasound images and intraoperative pictures are presented with a focus on how ultrasound aided with surgical decision making. These cases are set into context with a review of the literature on peripheral nerve ultrasound and a comparison between ultrasound and MRI modalities.

Free access

Ashish H. Shah, Angela M. Richardson, Joshua D. Burks and Ricardo J. Komotar

Recurrent treatment-refractory brain metastases can be treated with modern adjuvant therapies such as laser interstitial thermal therapy (LITT). Since previously radiated lesions may be indolent (treatment effect) or recurrent tumor, histological confirmation may be helpful. The authors present the utility of contemporaneous biopsy and LITT using intraoperative O-arm navigation in a patient who presented with multiple refractory metastases. The authors demonstrate the utility of O-arm navigation to confirm intraoperative biopsy and LITT placement. Concurrent stereotactic biopsy and LITT may be a safe and efficacious method for both the diagnosis and treatment of deep lesions that are unamenable to standard adjuvant treatment modalities.

The video can be found here: https://youtu.be/SUY-qiahMyo.

Restricted access

Andrew K. Conner, Joshua D. Burks, Cordell M. Baker, Adam D. Smitherman, Dillon P. Pryor, Chad A. Glenn, Robert G. Briggs, Phillip A. Bonney and Michael E. Sughrue

OBJECTIVE

The purpose of this study was to describe a method of resecting temporal gliomas through a keyhole lobectomy and to share the results of using this technique.

METHODS

The authors performed a retrospective review of data obtained in all patients in whom the senior author performed resection of temporal gliomas between 2012 and 2015. The authors describe their technique for resecting dominant and nondominant gliomas, using both awake and asleep keyhole craniotomy techniques.

RESULTS

Fifty-two patients were included in the study. Twenty-six patients (50%) had not received prior surgery. Seventeen patients (33%) were diagnosed with WHO Grade II/III tumors, and 35 patients (67%) were diagnosed with a glioblastoma. Thirty tumors were left sided (58%). Thirty procedures (58%) were performed while the patient was awake. The median extent of resection was 95%, and at least 90% of the tumor was resected in 35 cases (67%). Five of 49 patients (10%) with clinical follow-up experienced permanent deficits, including 3 patients (6%) with hydrocephalus requiring placement of a ventriculoperitoneal shunt and 2 patients (4%) with weakness. Three patients experienced early postoperative anomia, but no patients had a new speech deficit at clinical follow-up.

CONCLUSIONS

The authors provide their experience using a keyhole lobectomy for resecting temporal gliomas. Their data demonstrate the feasibility of using less invasive techniques to safely and aggressively treat these tumors.

Full access

Joshua D. Burks, Andrew K. Conner, Robert G. Briggs, Chad A. Glenn, Phillip A. Bonney, Ahmed A. Cheema, Sixia Chen, Naina L. Gross and Timothy B. Mapstone

OBJECTIVE

Experience has led us to suspect an association between shunt malfunction and recent abdominal surgery, yet information about this potential relationship has not been explored in the literature. The authors compared shunt survival in patients who underwent abdominal surgery to shunt survival in our general pediatric shunt population to determine whether such a relationship exists.

METHODS

The authors performed a retrospective review of all cases in which pediatric patients underwent ventriculoperitoneal shunt operations at their institution during a 7-year period. Survival time in shunt operations that followed abdominal surgery was compared with survival time of shunt operations in patients with no history of abdominal surgery. Univariate and multivariate analyses were used to identify factors associated with failure.

RESULTS

A total of 141 patients who underwent 468 shunt operations during the period of study were included; 107 of these 141 patients had no history of abdominal surgery and 34 had undergone a shunt operation after abdominal surgery. Shunt surgery performed more than 2 weeks after abdominal surgery was not associated with time to shunt failure (p = 0.86). Shunt surgery performed within 2 weeks after abdominal surgery was associated with time to failure (adjusted HR 3.6, 95% CI 1.3–9.6).

CONCLUSIONS

Undergoing shunt surgery shortly after abdominal surgery appears to be associated with shorter shunt survival. When possible, some patients may benefit from shunt placement utilizing alternative termini.

Full access

Joshua D. Burks, Phillip A. Bonney, Andrew K. Conner, Chad A. Glenn, Robert G. Briggs, James D. Battiste, Tressie McCoy, Daniel L. O'Donoghue, Dee H. Wu and Michael E. Sughrue

OBJECTIVE

Gliomas invading the anterior corpus callosum are commonly deemed unresectable due to an unacceptable risk/benefit ratio, including the risk of abulia. In this study, the authors investigated the anatomy of the cingulum and its connectivity within the default mode network (DMN). A technique is described involving awake subcortical mapping with higher attention tasks to preserve the cingulum and reduce the incidence of postoperative abulia for patients with so-called butterfly gliomas.

METHODS

The authors reviewed clinical data on all patients undergoing glioma surgery performed by the senior author during a 4-year period at the University of Oklahoma Health Sciences Center. Forty patients were identified who underwent surgery for butterfly gliomas. Each patient was designated as having undergone surgery either with or without the use of awake subcortical mapping and preservation of the cingulum. Data recorded on these patients included the incidence of abulia/akinetic mutism. In the context of the study findings, the authors conducted a detailed anatomical study of the cingulum and its role within the DMN using postmortem fiber tract dissections of 10 cerebral hemispheres and in vivo diffusion tractography of 10 healthy subjects.

RESULTS

Forty patients with butterfly gliomas were treated, 25 (62%) with standard surgical methods and 15 (38%) with awake subcortical mapping and preservation of the cingulum. One patient (1/15, 7%) experienced postoperative abulia following surgery with the cingulum-sparing technique. Greater than 90% resection was achieved in 13/15 (87%) of these patients.

CONCLUSIONS

This study presents evidence that anterior butterfly gliomas can be safely removed using a novel, attention-task based, awake brain surgery technique that focuses on preserving the anatomical connectivity of the cingulum and relevant aspects of the cingulate gyrus.

Restricted access

Joshua D. Burks, Andrew K. Conner, Robert G. Briggs, Phillip A. Bonney, Adam D. Smitherman, Cordell M. Baker, Chad A. Glenn, Cameron A. Ghafil, Dillon P. Pryor, Kyle P. O’Connor and Bradley N. Bohnstedt

OBJECTIVE

A shifting emphasis on efficient utilization of hospital resources has been seen in recent years. However, reduced screening for blunt vertebral artery injury (BVAI) may result in missed diagnoses if risk factors are not fully understood. The authors examined the records of blunt trauma patients with fractures near the craniocervical junction who underwent CTA at a single institution to better understand the risk of BVAI imposed by occipital condyle fractures (OCFs).

METHODS

The authors began with a query of their prospectively collected trauma registry to identify patients who had been screened for BVAI using ICD-9-CM diagnostic codes. Grade and segment were recorded in instances of BVAI. Locations of fractures were classified into 3 groups: 1) OCFs, 2) C1 (atlas) fractures, and 3) fractures of the C2–6 vertebrae. Univariate and multivariate analyses were performed to identify any fracture types associated with BVAI.

RESULTS

During a 6-year period, 719 patients underwent head and neck CTA following blunt trauma. Of these patients, 147 (20%) had OCF. BVAI occurred in 2 of 43 patients with type I OCF, 1 of 42 with type II OCF, and in 9 of 62 with type III OCF (p = 0.12). Type III OCF was an independent risk factor for BVAI in multivariate modeling (OR 2.29 [95% CI 1.04–5.04]), as were fractures of C1–6 (OR 5.51 [95% CI 2.57–11.83]). Injury to the V4 segment was associated with type III OCF (p < 0.01).

CONCLUSIONS

In this study, the authors found an association between type III OCF and BVAI. While further study may be necessary to elucidate the mechanism of injury in these cases, this association suggests that thorough cerebrovascular evaluation is warranted in patients with type III OCF.

Restricted access

Joshua D. Burks, Andrew K. Conner, Phillip A. Bonney, Chad A. Glenn, Cordell M. Baker, Lillian B. Boettcher, Robert G. Briggs, Daniel L. O’Donoghue, Dee H. Wu and Michael E. Sughrue

OBJECTIVE

The orbitofrontal cortex (OFC) is understood to have a role in outcome evaluation and risk assessment and is commonly involved with infiltrative tumors. A detailed understanding of the exact location and nature of associated white matter tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging–based fiber tracking validated by gross anatomical dissection as ground truth, the authors have characterized these connections based on relationships to other well-known structures.

METHODS

Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. The OFC was evaluated as a whole based on connectivity with other regions. All OFC tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. Ten postmortem dissections were then performed using a modified Klingler technique to demonstrate the location of major tracts.

RESULTS

The authors identified 3 major connections of the OFC: a bundle to the thalamus and anterior cingulate gyrus, passing inferior to the caudate and medial to the vertical fibers of the thalamic projections; a bundle to the brainstem, traveling lateral to the caudate and medial to the internal capsule; and radiations to the parietal and occipital lobes traveling with the inferior fronto-occipital fasciculus.

CONCLUSIONS

The OFC is an important center for processing visual, spatial, and emotional information. Subtle differences in executive functioning following surgery for frontal lobe tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.

Free access

Joshua D. Burks, Katie L. Gant, James D. Guest, Aria G. Jamshidi, Efrem M. Cox, Kim D. Anderson, W. Dalton Dietrich, Mary Bartlett Bunge, Barth A. Green, Aisha Khan, Damien D. Pearse, Efrat Saraf-Lavi and Allan D. Levi

OBJECTIVE

In cell transplantation trials for spinal cord injury (SCI), quantifiable imaging criteria that serve as inclusion criteria are important in trial design. The authors’ institutional experience has demonstrated an overall high rate of screen failures. The authors examined the causes for trial exclusion in a phase I, open-lab clinical trial examining the role of autologous Schwann cell intramedullary transplantation. Specifically, they reviewed the imaging characteristics in people with chronic SCI that excluded applicants from the trial, as this was a common cause of screening failures in their study.

METHODS

The authors reviewed MRI records from 152 people with chronic (> 1 year) SCI who volunteered for intralesional Schwann cell transplantation but were deemed ineligible by prospectively defined criteria. Rostral-caudal injury lesion length was measured along the long axis of the spinal cord in the sagittal plane on T2-weighted MRI. Other lesion characteristics, specifically those pertaining to lesion cavity structure resulting in trial exclusion, were recorded.

RESULTS

Imaging records from 152 potential participants with chronic SCI were reviewed, 42 with thoracic-level SCI and 110 with cervical-level SCI. Twenty-three individuals (55%) with thoracic SCI and 70 (64%) with cervical SCI were not enrolled in the trial based on imaging characteristics. For potential participants with thoracic injuries who did not meet the screening criteria for enrollment, the average rostral-caudal sagittal lesion length was 50 mm (SD 41 mm). In applicants with cervical injuries who did not meet the screening criteria for enrollment, the average sagittal lesion length was 34 mm (SD 21 mm).

CONCLUSIONS

While screening people with SCI for participation in a cell transplantation clinical trial, lesion length or volume can exclude potential subjects who appear appropriate candidates based on neurological eligibility criteria. In planning future cell-based therapy trials, the limitations incurred by lesion size should be considered early due to the screening burden and impact on candidate selection.