Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Joseph M. Lombardi x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Nathan J. Lee, Michael Fields, Fthimnir M. Hassan, Scott L. Zuckerman, Alex S. Ha, Joseph M. Lombardi, Zeeshan M. Sardar, Ronald A. Lehman, and Lawrence G. Lenke

OBJECTIVE

The objective was to describe an intraoperative method that accurately predicts postoperative coronal alignment for up to 2 years of follow-up. The authors hypothesized that the intraoperative coronal target for adult spinal deformity (ASD) surgery should account for lower-extremity parameters, including pelvic obliquity (PO), leg length discrepancy (LLD), lower-extremity mechanical axis difference (MAD), and asymmetrical knee bending.

METHODS

Two lines were drawn on intraoperative prone radiographs: the central sacral pelvic line (CSPL) (the line bisecting the sacrum and perpendicular to the line touching the acetabular sourcil of both hips) and the intraoperative central sacral vertical line (iCSVL) (which is drawn relative to CSPL based on the preoperative erect PO). The distance from the C7 spinous process to CSPL (C7-CSPL) and the distance from the C7 spinous process to iCSVL (iCVA) were compared with immediate and 2-year postoperative CVA. To account for LLD and preoperative lower-extremity compensation, patients were categorized into four preoperative groups: type 1, no LLD (< 1 cm) and no lower-extremity compensation; type 2, no LLD with lower-extremity compensation (PO > 1°, asymmetrical knee bending, and MAD > 2°); type 3, LLD and no lower-extremity compensation; and type 4, LLD with lower-extremity compensation (asymmetrical knee bending and MAD > 4°). A retrospective review of a consecutively collected cohort with ASD who underwent minimum 6-level fusion with pelvic fixation was performed for validation.

RESULTS

In total, 108 patients (mean ± SD age 57.7 ± 13.7 years, 14.0 ± 3.9 levels fused) were reviewed. Mean preoperative/2-year postoperative CVA was 5.0 ± 2.0/2.2 ± 1.8 cm. For patients with type 1, both C7-CSPL and iCVA had similar error margins for immediate postoperative CVA (0.5 ± 0.6 vs 0.5 ± 0.6 cm, p = 0.900) and 2-year postoperative CVA (0.3 ± 0.4 vs 0.4 ± 0.5 cm, p = 0.185). For patients with type 2, C7-CSPL was more accurate for immediate postoperative CVA (0.8 ± 1.2 vs 1.7 ± 1.8 cm, p = 0.006) and 2-year postoperative CVA (0.7 ± 1.1 vs 2.1 ± 2.2 cm, p < 0.001). For patients with type 3, iCVA was more accurate for immediate postoperative CVA (0.3 ± 0.4 vs 1.7 ± 0.8 cm, p < 0.001) and 2-year postoperative CVA (0.3 ± 0.2 vs 1.9 ± 0.8 cm, p < 0.001). For patients with type 4, iCVA was more accurate for immediate postoperative CVA (0.6 ± 0.7 vs 3.0 ± 1.3 cm, p < 0.001) and 2-year postoperative CVA (0.5 ± 0.6 vs 3.0 ± 1.6 cm, p < 0.001).

CONCLUSIONS

This system, which accounted for lower-extremity factors, provided an intraoperative guide to determine both immediate and 2-year postoperative CVA with high accuracy. For patients with type 1 and 2 (no LLD, with or without lower-extremity compensation), C7–intraoperative CSPL accurately predicted postoperative CVA up to 2-year follow-up (mean error 0.5 cm). For patients with type 3 and 4 (LLD, with or without lower-extremity compensation), iCVA accurately predicted postoperative CVA up to 2-year follow-up (mean error 0.4 cm).

Full access

James D. Lin, Lee A. Tan, Chao Wei, Jamal N. Shillingford, Joseph L. Laratta, Joseph M. Lombardi, Yongjung J. Kim, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

The S2-alar-iliac (S2AI) screw is an increasingly popular method for spinopelvic fixation. The technique of freehand S2AI screw placement has been recently described. The purpose of this study was to demonstrate, through a CT imaging study of patients with spinal deformity, that screw trajectories based on the posterior superior iliac spine (PSIS) and sacral laminar slope result in reliable freehand S2AI trajectories that traverse safely above the sciatic notch.

METHODS

Fifty consecutive patients (age ≥ 18 years) who underwent primary spinal deformity surgery were included in the study. Simulated S2AI screw trajectories were analyzed with 3D visualization software. The cephalocaudal coordinate for the starting point was 15 mm cephalad to the PSIS. The mediolateral coordinate for the starting point was in line with the lateral border of the dorsal foramina. The cephalocaudal screw trajectory was perpendicular to the sacral laminar slope. Screw trajectories, lengths, and distance above the sciatic notch were measured.

RESULTS

The mean sagittal screw angle (cephalocaudal angulation) was 44.0° ± 8.4° and the mean transverse angle (mediolateral angulation) was 37.3° ± 4.3°. The mean starting point was 5.9 ± 5.8 mm distal to the caudal border of the S1 foramen. The mean screw length was 99.9 ± 18.6 mm. Screw trajectories were on average 8.5 ± 4.3 mm above the sciatic notch. A total of 97 of 100 screws were placed above the sciatic notch. In patients with transitional lumbosacral anatomy, the starting point on the lumbarized/sacralized side was 3.4 mm higher than on the contralateral unaffected side.

CONCLUSIONS

The PSIS and sacral laminar slope are two important anatomical landmarks for freehand S2AI screw placement.

Free access

Alex S. Ha, Meghan Cerpa, Justin Mathew, Paul Park, Joseph M. Lombardi, Andrew J. Luzzi, Nathan J. Lee, Marc D. Dyrszka, Zeeshan M. Sardar, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

Lumbosacral fractional curves in adult spinal deformity (ASD) patients often have sharp coronal curves resulting in significant pain and imbalance. Postoperative stretch neuropraxia after fractional curve correction can lead to discomfort and unsatisfactory outcomes. The goal of this study was to use radiographic measures to increase understanding of the relationship between postoperative stretch neuropraxia and fractional curve correction.

METHODS

In 62 ASD patients treated from 2015 to 2018, radiographic review was performed, including measurement of the distance between the lower lumbar neural foramen (L4 and L5) in the concavity and convexity of the lumbosacral fractional curve and the ipsilateral femoral heads (FHs; L4–FH and L5–FH) in pre- and postoperative anteroposterior spine radiographs. The largest absolute preoperative to postoperative change in distance between the lower lumbar neural foramen and the ipsilateral FH (ΔL4/L5–FH) was used for analysis. Chi-square analyses, independent and paired t-tests, and logistic regression were performed to study the relationship between L4/L5–FH and stretch neuropraxia for categorical and continuous variables, respectively.

RESULTS

Of the 62 patients, 13 (21.0%) had postoperative stretch neuropraxia. Patients without postoperative stretch neuropraxia had an average ΔL4–FH distance of 16.2 mm compared to patients with stretch neuropraxia, who had an average ΔL4–FH distance of 31.5 mm (p < 0.01). Patients without postoperative neuropraxia had an average ΔL5–FH distance of 11.1 mm compared to those with stretch neuropraxia, who had an average ΔL5–FH distance of 23.0 mm (p < 0.01). Chi-square analysis showed that patients had a 4.78-fold risk of developing stretch neuropraxia with ΔL4–FH > 20 mm (95% CI 1.3–17.3) and a 5.17-fold risk of developing stretch neuropraxia with ΔL5–FH > 15 mm (95% CI 1.4–18.7). Logistic regression analysis indicated that the odds of developing stretch neuropraxia were 15:1 with a ΔL4–FH > 20 mm (95% CI 3–78) and 21:1 with a ΔL5–FH > 15 mm (95% CI 4–113).

CONCLUSIONS

The novel ΔL4/L5–FH distances are strongly associated with postoperative stretch neuropraxia in ASD patients. A ΔL4–FH > 20 mm and ΔL5–FH > 15 mm significantly increase the odds for patients to develop postoperative stretch neuropraxia.

Free access

Chelsea J. Hendow, Alexander Beschloss, Alejandro Cazzulino, Joseph M. Lombardi, Philip K. Louie, Andrew H. Milby, Andrew J. Pugely, Ali K. Ozturk, Steven C. Ludwig, and Comron Saifi

OBJECTIVE

The objective of this study was to investigate revision burden and associated demographic and economic data for atlantoaxial (AA) fusion procedures in the US.

METHODS

Patient data from the National Inpatient Sample (NIS) database for primary AA fusion were obtained from 1993 to 2015, and for revision AA fusion from 2006 to 2014 using ICD-9 procedure codes. Data from 2006 to 2014 were used in comparisons between primary and revision surgeries. National procedure rates, hospital costs/charges, length of stay (LOS), routine discharge, and mortality rates were investigated.

RESULTS

Between 1993 and 2014, 52,011 patients underwent primary AA fusion. Over this period, there was a 111% increase in annual number of primary surgeries performed. An estimated 1372 patients underwent revision AA fusion between 2006 and 2014, and over this time period there was a 6% decrease in the number of revisions performed annually. The 65–84 year-old age group increased as a proportion of primary AA fusions in the US from 35.9% of all AA fusions in 1997 to 44.2% in 2015, an increase of 23%. The mean hospital cost for primary AA surgery increased 32% between 2006 and 2015, while the mean cost for revision AA surgery increased by 35% between 2006 and 2014. Between 2006 and 2014, the mean hospital charge for primary AA surgery increased by 67%; the mean charge for revision surgery over that same period increased by 57%. Between 2006 and 2014, the mean age for primary AA fusions was 60 years, while the mean age for revision AA fusions was 52 years. The mean LOS for both procedures decreased over the study period, with primary AA fusion decreasing by 31% and revision AA fusion decreasing by 24%. Revision burden decreased by 21% between 2006 and 2014 (mean 4.9%, range 3.2%–6.4%). The inpatient mortality rate for primary AA surgery decreased from 5.3% in 1993 to 2.2% in 2014.

CONCLUSIONS

The number of primary AA fusions between 2006 and 2014 increased 22%, while the number of revision procedures has decreased 6% over the same period. The revision burden decreased by 21%. The inpatient mortality rate decreased 62% (1993–2014) to 2.2%. The increased primary fusion rate, decreased revision burden, and decreased inpatient mortality determined in this study may suggest an improvement in the safety and success of primary AA fusion.

Free access

Nathan J. Lee, Paul J. Park, Varun Puvanesarajah, William E. Clifton, Kevin Kwan, Cole R. Morrissette, Jaques L. Williams, Michael W. Fields, Eric Leung, Fthimnir M. Hassan, Peter D. Angevine, Christopher E. Mandigo, Joseph M. Lombardi, Zeeshan M. Sardar, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

There is a paucity of literature on pelvic fixation failure after adult spine surgery in the early postoperative period. The purpose of this study was to determine the incidence of acute pelvic fixation failure in a large single-center study and to describe the lessons learned.

METHODS

The authors performed a retrospective review of adult (≥ 18 years old) patients who underwent spinal fusion with pelvic fixation (iliac, S2-alar-iliac [S2AI] screws) at a single academic medical center between 2015 and 2020. All patients had a minimum of 3 instrumented levels. The minimum follow-up was 6 months after the index spine surgery. Patients with prior pelvic fixation were excluded. Acute pelvic fixation failure was defined as revision of the pelvic screws within 6 months of the primary surgery. Patient demographics and operative, radiographic, and rod/screw parameters were collected. All rods were cobalt-chrome. All iliac and S2AI screws were closed-headed screws.

RESULTS

In 358 patients, the mean age was 59.5 ± 13.6 years, and 64.0% (n = 229) were female. The mean number of instrumented levels was 11.5 ± 5.5, and 79.1% (n = 283) had ≥ 6 levels fused. Three-column osteotomies were performed in 14.2% (n = 51) of patients, and 74.6% (n = 267) had an L5–S1 interbody fusion. The mean diameter/length of pelvic screws was 8.5/86.6 mm. The mean number of pelvic screws was 2.2 ± 0.5, the mean rod diameter was 6.0 ± 0 mm, and 78.5% (n = 281) had > 2 rods crossing the lumbopelvic junction. Accessory rods extended to S1 (32.7%, n = 117) or S2/ilium (45.8%, n = 164). Acute pelvic fixation failure occurred in 1 patient (0.3%); this individual had a broken S2AI screw near the head-neck junction. This 76-year-old woman with degenerative lumbar scoliosis and chronic lumbosacral zone 1 fracture nonunion had undergone posterior instrumented fusion from T10 to pelvis with bilateral S2AI screws (8.5 × 90 mm); i.e., transforaminal lumbar interbody fusion L4–S1. The patient had persistent left buttock pain postoperatively, with radiographically confirmed breakage of the left S2AI screw 68 days after surgery. Revision included instrumentation removal at L2–pelvis and a total of 4 pelvic screws.

CONCLUSIONS

The acute pelvic fixation failure rate was exceedingly low in adult spine surgery. This rate may be the result of multiple factors including the preference for multirod (> 2), closed-headed pelvic screw constructs in which large-diameter long screws are used. Increasing the number of rods and screws at the lumbopelvic junction may be important factors to consider, especially for patients with high risk for nonunion.

Restricted access

Nathan J. Lee, Gerard Marciano, Varun Puvanesarajah, Paul J. Park, William E. Clifton, Kevin Kwan, Cole R. Morrissette, Jaques L. Williams, Michael Fields, Fthimnir M. Hassan, Peter D. Angevine, Christopher E. Mandigo, Joseph M. Lombardi, Zeeshan M. Sardar, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

The purpose of this study was to determine the incidence, mechanism, and potential protective strategies for pelvic fixation failure (PFF) within 2 years after adult spinal deformity (ASD) surgery.

METHODS

Data for ASD patients (age ≥ 18 years, minimum of six instrumented levels) with pelvic fixation (S2-alar-iliac [S2AI] and/or iliac screws) with a minimum 2-year follow-up were consecutively collected (2015–2019). Patients with prior pelvic fixation were excluded. PFF was defined as any revision to pelvic screws, which may include broken rods across the lumbosacral junction requiring revision to pelvic screws, pseudarthrosis across the lumbosacral junction requiring revision to pelvic screws, a broken or loose pelvic screw, or sacral/iliac fracture. Patient information including demographic data and health history (age, sex, BMI, smoking status, American Society of Anesthesiologists score, osteoporosis), operative (total instrumented levels [TIL], three-column osteotomy [3CO], interbody fusion), screw (iliac, S2AI, length, diameter), rod (diameter, kickstand), rod pattern (number crossing lumbopelvic junction, lowest instrumented vertebra [LIV] of accessory rod[s], lateral connectors, dual-headed screws), and pre- and postradiographic (lumbar lordosis, pelvic incidence, pelvic tilt, major Cobb angle, lumbosacral fractional curve, C7 coronal vertical axis [CVA], T1 pelvic angle, C7 sagittal vertical axis) parameters was collected. All rods across the lumbosacral junction were cobalt-chrome. All iliac and S2AI screws were closed-headed tulips. Both univariate and multivariate analyses were performed to determine risk factors for PFF.

RESULTS

Of 253 patients (mean age 58.9 years, mean TIL 13.6, 3CO 15.8%, L5–S1 interbody 74.7%, mean pelvic screw diameter/length 8.6/87 mm), the 2-year failure rate was 4.3% (n = 11). The mechanisms of failure included broken rods across the lumbosacral junction (n = 4), pseudarthrosis across the lumbosacral junction requiring revision to pelvic screws (n = 3), broken pelvic screw (n = 1), loose pelvic screw (n = 1), sacral/iliac fracture (n = 1), and painful/prominent pelvic screw (n = 1). A higher number of rods crossing the lumbopelvic junction (mean 3.8 no failure vs 2.9 failure, p = 0.009) and accessory rod LIV to S2/ilium (no failure 54.2% vs failure 18.2%, p = 0.003) were protective for failure. Multivariate analysis demonstrated that accessory rod LIV to S2/ilium versus S1 (OR 0.2, p = 0.004) and number of rods crossing the lumbar to pelvis (OR 0.15, p = 0.002) were protective, while worse postoperative CVA (OR 1.5, p = 0.028) was an independent risk factor for failure.

CONCLUSIONS

The 2-year PFF rate was low relative to what is reported in the literature, despite patients undergoing long fusion constructs for ASD. The number of rods crossing the lumbopelvic junction and accessory rod LIV to S2/ilium relative to S1 alone likely increase construct stiffness. Residual postoperative coronal malalignment should be avoided to reduce PFF.

Free access

Asham Khan, Mohamed A. R. Soliman, Nathan J. Lee, Muhammad Waqas, Joseph M. Lombardi, Venkat Boddapati, Lauren C. Levy, Jennifer Z. Mao, Paul J. Park, Justin Mathew, Ronald A. Lehman Jr., Jeffrey P. Mullin, and John Pollina

OBJECTIVE

Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods.

METHODS

A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports.

RESULTS

Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3).

CONCLUSIONS

Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.