Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Joseph A. Maldjian x
Clear All Modify Search
Restricted access

Michael Schulder, Joseph A. Maldjian, Wen-Ching Liu, Andrei I. Holodny, Andrew T. Kalnin, In Ki Mun and Peter W. Carmel

Object. The purpose of this study was to evaluate the efficacy of noninvasive preoperative functional imaging data used in an interactive fashion in the operating room. The authors describe a method of registering preoperative functional magnetic resonance (fMR) imaging localization of sensorimotor cortex with a frameless stereotactic surgical navigation device.

Methods. The day before surgery, patients underwent blood oxygen level—dependent fMR imaging while performing a finger-tapping motor paradigm. Immediately afterward an anatomical stereotactic MR image was acquired. Raw fMR imaging data were analyzed offline at a separate workstation, and the resulting functional maps were registered to a high-resolution anatomical scan. The fused functional—anatomical images were then downloaded onto a surgical navigation computer via an ethernet connection. At surgery, the brain was exposed in the standard fashion, and the sensorimotor cortex was identified by direct cortical stimulation, the use of somatosensory evoked potentials, or both. This localization was then compared with that predicted by the registered fMR study.

Thirteen procedures were performed in 12 patients. The mean registration error was 2.2 mm. The predicted location of motor and/or sensory cortex matched that found on intraoperative mapping in all 12 patients tested. Maximal tumor resection was accomplished in each case and no new permanent neurological deficits resulted.

Conclusions. Compared with conventional brain mapping techniques, fMR image—guided surgery may allow for smaller brain exposures, localization of the language cortex with the patient under general anesthesia, and the mapping of multiple functional sites. The scanning equipment used in this method may be more readily available than for other functional imaging techniques such as positron emission tomography or magnetoencephalography.

Restricted access

Mireille E. Kelley, Mark A. Espeland, William C. Flood, Alexander K. Powers, Christopher T. Whitlow, Joseph A. Maldjian, Joel D. Stitzel and Jillian E. Urban

OBJECTIVE

Limiting contact in football practice can reduce the number of head impacts a player receives, but further research is needed to inform the modification of optimal drills that mitigate head impact exposure (HIE) while the player develops the skills needed to safely play the game. This study aimed to compare HIE in practice drills among 6 youth football teams and to evaluate the effect of a team on HIE.

METHODS

On-field head impact data were collected from athletes (ages 10–13 years) playing on 6 local youth football teams (teams A–F) during all practices using the Head Impact Telemetry System. Video was recorded and analyzed to verify and assign impacts to a specific drill. Drills were identified as follows: dummy/sled tackling, half install, install, install walk through, multiplayer tackle, Oklahoma, one-on-one, open field tackling, other, passing, position skill work, scrimmage, special teams, tackling drill stations, and technique. HIE was quantified in terms of impacts per player per minute (ppm) and peak linear and rotational head acceleration. Generalized linear models were used to assess differences in head impact magnitude and frequency among drills as well as among teams within the most common drills.

RESULTS

Among 67 athlete-seasons, a total of 14,718 impacts during contact practices were collected and evaluated in this study. Among all 6 teams, the mean linear (p < 0.0001) and rotational (p < 0.0001) acceleration varied significantly among all drills. Open field tackling had significantly (p < 0.001) higher mean linear acceleration than all other drills. Multiplayer tackle had the highest mean impact rate (0.35 ppm). Significant variations in linear acceleration and impact rate were observed among teams within specific drills. Team A had the highest mean linear acceleration in install, one-on-one, and open field tackling and the highest mean impact rate in Oklahoma and position skill work. Although team A spent the greatest proportion of their practice on minimal- or no-player versus player contact drills (27%) compared to other teams, they had the highest median (20.2g) and 95th percentile (56.4g) linear acceleration in practice.

CONCLUSIONS

Full-speed tackling and blocking drills resulted in the highest HIE. Reducing time spent on contact drills relative to minimal or no contact drills may not lower overall HIE. Instead, interventions such as reducing the speed of players engaged in contact, correcting tackling technique, and progressing to contact may reduce HIE more effectively.

Restricted access

Jillian E. Urban, William C. Flood, Barret J. Zimmerman, Mireille E. Kelley, Mark A. Espeland, Liam McNamara, Elizabeth M. Davenport, Alexander K. Powers, Christopher T. Whitlow, Joseph A. Maldjian and Joel D. Stitzel

OBJECTIVE

There is a growing body of literature informing efforts to improve the safety of football; however, research relating on-field activity to head impacts in youth football is limited. Therefore, the objective of this study was to compare head impact exposure (HIE) measured in game plays among 3 youth football teams.

METHODS

Head impact and video data were collected from athletes (ages 10–13 years) participating on 3 youth football teams. Video analysis was performed to verify head impacts and assign each to a specific play type. Each play was categorized as a down, punt, kickoff, field goal, or false start. Kickoffs and punts were classified as special teams. Downs were classified as running, passing, or other. HIE was quantified by play type in terms of mean, median, and 95th percentile linear and rotational acceleration. Mixed-effects models were used to assess differences in acceleration among play types. Contact occurring on special teams plays was evaluated using a standardized video abstraction form.

RESULTS

A total of 3003 head impacts over 27.5 games were analyzed and paired with detailed video coding of plays. Most head impacts were attributed to running (79.6%), followed by passing (14.0%), and special teams (6.4%) plays. The 95th percentile linear acceleration measured during each play type was 52.6g, 50.7g, and 65.5g, respectively. Special teams had significantly greater mean linear acceleration than running and passing plays (both p = 0.03). The most common kick result on special teams was a deep kick, of which 85% were attempted to be returned. No special teams plays resulted in a touchback, and one resulted in a fair catch. One-third of all special teams plays and 92% of all nonreturned kicks resulted in athletes diving toward the ball.

CONCLUSIONS

The results demonstrate a trend toward higher head impact magnitudes on special teams than for running and passing plays, but a greater number of impacts were measured during running plays. Deep kicks were most common on special teams, and many returned and nonreturned kicks resulted in athletes diving toward the ball. These results support policy changes to youth special teams plays, including modifying the yard line the ball is kicked from and coaching proper return technique. Further investigation into biomechanical exposure measured during game impact scenarios is needed to inform policy relevant to the youth level.

Restricted access

Joseph Maldjian, Scott W. Atlas, Robert S. Howard II, Elizabeth Greenstein, David Alsop, John A. Detre, John Listerud, Mark D'Esposito and Eugene S. Flamm

✓ Functional magnetic resonance (MR) imaging was performed in six patients harboring proven intracerebral arteriovenous malformations (AVMs) using a noninvasive blood oxygen level—dependent technique based on the documented discrepancy between regional increases in blood flow and oxygen utilization in response to regional brain activation. Statistical functional MR maps were generated and overlaid directly onto conventional MR images obtained at the same session. In the six patients studied, a total of 23 separate functional MR imaging activation studies were performed. Of these, two runs were discarded because of motion artifacts. All of the remaining 21 studies demonstrated activation in or near expected regions for the paradigm employed. Qualitatively reproducible regional localizations of functional activity in unexpected sites were also seen. The authors' findings indicating aberrant mapping of cortical function may be explained on the basis of the plasticity of brain function, in that the developing brain can take over function that would normally have been performed by regions of brain encompassed by the lesion. Preliminary results in this study's small number of cases also indicate that activity demonstrated within the confines of the apparent AVM nidus may help predict the development of a posttherapy deficit. The authors demonstrate that functional MR imaging can be successfully and reproducibly performed in patients with intracerebral AVMs. Notwithstanding the paucity of normative data using functional MR imaging, the authors' findings support cortical reorganization associated with these congenital lesions. Blood oxygen level—dependent MR imaging is a noninvasive method used to localize areas of eloquent cortex in patients harboring AVMs; it may prove to be of value in treatment planning.

Restricted access

Matthew J. Kuhn, Piero Picozzi, Joseph A. Maldjian, Ilona M. Schmalfuss, Kenneth R. Maravilla, Brian C. Bowen, Franz J. Wippold II, Val M. Runge, Michael V. Knopp, Leo J. Wolansky, Lars Gustafsson, Marco Essig and Nicoletta Anzalone

Object

The goal in this article was to compare 0.1 mmol/kg doses of gadobenate dimeglumine (Gd-BOPTA) and gadopentetate dimeglumine, also known as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), for enhanced magnetic resonance (MR) imaging of intraaxial brain tumors.

Methods

Eighty-four patients with either intraaxial glioma (47 patients) or metastasis (37 patients) underwent two MR imaging examinations at 1.5 tesla, one with Gd-BOPTA as the contrast agent and the other with Gd-DTPA. The interval between fully randomized contrast medium administrations was 2 to 7 days. The T1-weighted spin echo and T2-weighted fast spin echo images were acquired before administration of contrast agents and T1-weighted spin echo images were obtained after the agents were administered. Acquisition parameters and postinjection acquisition times were identical for the two examinations in each patient. Three experienced readers working in a fully blinded fashion independently evaluated all images for degree and quality of available information (lesion contrast enhancement, lesion border delineation, definition of disease extent, visualization of the lesion's internal structures, global diagnostic preference) and quantitative enhancement (that is, the extent of lesion enhancement after contrast agent administration compared with that seen before its administration [hereafter referred to as percent enhancement], lesion/brain ratio, and contrast/noise ratio). Differences were tested with the Wilcoxon signed-rank test. Reader agreement was assessed using kappa statistics.

Significantly better diagnostic information/imaging performance (p < 0.0001, all readers) was obtained with Gd-BOPTA for all visualization end points. Global preference for images obtained with Gd-BOPTA was expressed for 42 (50%), 52 (61.9%), and 56 (66.7%) of 84 patients (readers 1, 2, and 3, respectively) compared with images obtained with Gd-DTPA contrast in four (4.8%), six (7.1%), and three (3.6%) of 84 patients. Similar differences were noted for all other visualization end points. Significantly greater quantitative contrast enhancement (p < 0.04) was noted after administration of Gd-BOPTA. Reader agreement was good (κ > 0.4).

Conclusions

Lesion visualization, delineation, definition, and contrast enhancement are significantly better after administration of 0.1 mmol/kg Gd-BOPTA, potentially allowing better surgical planning and follow up and improved disease management.