Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: Jorge Gonzalez-Martinez x
Clear All Modify Search
Restricted access

Jorge Gonzalez-martinez, Laura Hernandez, Lucia Zamorano, Andrew Sloan, Kenneth Levin, Simon Lo, Qinghang Li and Fernando Diaz

Object. The purpose of this study was to evaluate retrospectively the effectiveness of stereotactic radiosurgery for intracranial metastatic melanoma and to identify prognostic factors related to tumor control and survival that might be helpful in determining appropriate therapy.

Methods. Twenty-four patients with intracranial metastases (115 lesions) metastatic from melanoma underwent radiosurgery. In 14 patients (58.3%) whole-brain radiotherapy (WBRT) was performed, and in 12 (50%) chemotherapy was conducted before radiosurgery. The median tumor volume was 4 cm3 (range 1–15 cm3). The mean dose was 16.4 Gy (range 13–20 Gy) prescribed to the 50% isodose at the tumor margin. All cases were categorized according to the Recursive Partitioning Analysis classification for brain metastases. Univariate and multivariate analyses of survival were performed to determine significant prognostic factors affecting survival.

The mean survival was 5.5 months after radiosurgery. The analyses revealed no difference in terms of survival between patients who underwent WBRT or chemotherapy and those who did not. A significant difference (p < 0.05) in mean survival was observed between patients receiving immunotherapy or those with a Karnofsky Performance Scale (KPS) score of greater than 90.

Conclusions. The treatment with systemic immunotherapy and a KPS score greater than 90 were factors associated with a better prognosis. Radiosurgery for melanoma-related brain metastases appears to be an effective treatment associated with few complications.

Restricted access

Jorge A. González-Martínez, William E. Bingaman, Steven A. Toms and Imad M. Najm

Object

The normal adult human telencephalon does not reveal evidence of spontaneous neuronal migration and differentiation despite the robust germinal capacity of the subventricular zone (SVZ) astrocyte ribbon that contains neural stem cells. This might be because it is averse to accepting new neurons into an established neuronal network, probably representing an evolutionary acquisition to prevent the formation of anomalous neuronal circuits. Some forms of epilepsy, such as malformations of cortical development, are thought to be due to abnormal corticogenesis during the embryonic and early postnatal periods. The role of postnatal architectural reorganization and possibly postnatal neurogenesis in some forms of epilepsy in humans remains unknown. In this study the authors used resected specimens of epileptic brain to determine whether neurogenesis could occur in the diseased tissue.

Methods

The authors studied freshly resected brain tissue obtained in 47 patients who underwent neurosurgical procedures and four autopsies. Forty-four samples were harvested in patients who underwent resection for the treatment of pharmacoresistant epilepsy.

Results

Using organotypic brain slice preparations cultured with 5-bromodeoxyuridine (a marker for cell proliferation), immunohistochemistry, and cell trackers, the authors demonstrate the presence of spontaneous cell proliferation, migration, and neuronal differentiation in the adult human telencephalon that starts in the SVZ and progresses to the adjacent white matter and neocortex in human neocortical pathological structures associated with epilepsy. No cell migration or neuronal differentiation was found in the control group.

Conclusions

The presence of spontaneous neurogenesis associated with some forms of human neocortical epilepsy may represent an erroneous and maladaptive mechanism for neuronal circuitry repair, or it may be an intrinsic part of the pathogenic process.

Restricted access

Hernando Rafael

Restricted access

Jorge A. González-Martínez, Gabriel Möddel, Zhong Ying, Richard A. Prayson, William E. Bingaman and Imad M. Najm

Object

Nitric oxide has been associated with epileptogenesis. Previous studies have shown increased expression of N-methyl-d-aspartate (NMDA) subunit NR2B receptors in epileptic dysplastic human neocortex. The expression of neuronal nitric oxide synthase (nNOS), and its relation to this subunit NR2B in epileptic dysplastic tissue has never been addressed.

Methods

Ten patients with medically intractable epilepsy caused by focal cortical dysplasia (CD), and 2 patients with mesial temporal sclerosis (control group) underwent pre- and/or intraoperative invasive monitoring evaluations. Cortical samples from epileptogenic and nonepileptogenic areas were collected from each patient intraoperatively. Samples were processed for cresyl violet staining, immunocytochemical tests with nNOS, NeuN, and NR2B, and immunofluorescence analyses to evaluate colocalized immunoreactivity between nNOS and NR2B.

Results

. All samples obtained in the patients with epilepsy revealed CD in various degrees. In the nonepileptic sample group, cresyl violet staining revealed normal cortical architecture in 9 samples, but a mild degree of CD in 3. The density and intensity of nNOS-stained neurons was remarkably increased in the epileptic tissue compared with nonepileptic samples (p < 0.05). Two types of nNOS-stained neurons were identified: Type I, expressing strong nNOS immunoreactivity in larger neurons; and Type II, expressing weak nNOS immunoreactivity in slightly smaller neurons. Different from Type I neurons, Type II nNOS-stained neurons revealed immunoreactivity colocalized with NR2B antibody.

Conclusions

The overexpression of nNOS in the epileptic samples and the immunoreactivity colocalization between nNOS and NR2B may suggest a possible role of nNOS and NO in the pathophysiological mechanisms related to in situ epileptogenicity.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010

Restricted access

Jorge A. González-Martínez, Zhong Ying, Richard Prayson, William Bingaman and Imad Najm

Object

Changes in the expression of glutamate transporters (GLTs) may play a role in the expression of epileptogenicity. Previous studies have shown an increased number of neuronal GLTs in human dysplastic neurons. The expression of glial and neuronal GLTs and glutamine synthetase (GS) in balloon cells (BCs) and BC-containing cortical dysplasia has not been studied.

Methods

The authors analyzed neocortical samples that were resected in 5 patients who had cortical dysplasia–induced medically intractable focal epilepsy and who underwent extraoperative prolonged electrocorticographic (ECoG) recordings. The expressions of glial (GLT1/EAAT2) and neuronal (EAAT3, EAAC1) GLTs and GS proteins were immunohistochemically studied in all 5 resected samples. The authors also assessed in situ colocalization of GLTs and GS with neuronal and glial markers.

Results

Balloon cell–containing cortical dysplasia lesions did not exhibit ictal patterns on prolonged extraoperative ECoG recordings. There was a differential expression of glial and neuronal GLTs in BCs and dysplastic neurons: the majority of BCs highly expressed glial but not neuronal GLTs. Dysplastic neurons showed increased immunohistochemical staining with neuronal EAAT3 but not with EAAT2/GLT1. Moreover, only glial fibrillary acidic protein–positive BCs also expressed GS.

Conclusions

There is a differential GLT expression in dysplastic and balloon cells. The presence of glial GLTs and GS in balloon cell cortical dysplasia suggests a possible antiepileptic role for BCs and is consistent with the reported increased epileptogenicity in GLT1-deficient animals.

Free access

Sumeet Vadera, Lara Jehi, Richard C. Burgess, Katherine Shea, Andreas V. Alexopoulos, John Mosher, Jorge Gonzalez-Martinez and William Bingaman

Object

During the presurgical evaluation of patients with medically intractable focal epilepsy, a variety of noninvasive studies are performed to localize the hypothetical epileptogenic zone and guide the resection. Magnetoencephalography (MEG) is becoming increasingly used in the clinical realm for this purpose. No investigators have previously reported on coregisteration of MEG clusters with postoperative resection cavities to evaluate whether complete “clusterectomy” (resection of the area associated with MEG clusters) was performed or to compare these findings with postoperative seizure-free outcomes.

Methods

The authors retrospectively reviewed the charts and imaging studies of 65 patients undergoing MEG followed by resective epilepsy surgery from 2009 until 2012 at the Cleveland Clinic. Preoperative MEG studies were fused with postoperative MRI studies to evaluate whether clusters were within the resected area. These data were then correlated with postoperative seizure freedom.

Results

Sixty-five patients were included in this study. The average duration of follow-up was 13.9 months, the mean age at surgery was 23.1 years, and the mean duration of epilepsy was 13.7 years. In 30 patients, the main cluster was located completely within the resection cavity, in 28 it was completely outside the resection cavity, and in 7 it was partially within the resection cavity. Seventy-four percent of patients were seizure free at 12 months after surgery, and this rate decreased to 60% at 24 months. Improved likelihood of seizure freedom was seen with complete clusterectomy in patients with localization outside the temporal lobe (extra–temporal lobe epilepsy) (p = 0.04).

Conclusions

In patients with preoperative MEG studies that show clusters in surgically accessible areas outside the temporal lobe, we suggest aggressive resection to improve the chances for seizure freedom. When the cluster is found within the temporal lobe, further diagnostic testing may be required to better localize the epileptogenic zone.

Free access

Sumeet Vadera, Amar R. Marathe, Jorge Gonzalez-Martinez and Dawn M. Taylor

Stereoelectroencephalography (SEEG) is becoming more prevalent as a planning tool for surgical treatment of intractable epilepsy. Stereoelectroencephalography uses long, thin, cylindrical “depth” electrodes containing multiple recording contacts along each electrode's length. Each lead is inserted into the brain percutaneously. The advantage of SEEG is that the electrodes can easily target deeper brain structures that are inaccessible with subdural grid electrodes, and SEEG does not require a craniotomy. Brain-machine interface (BMI) research is also becoming more common in the Epilepsy Monitoring Unit. A brain-machine interface decodes a person's desired movement or action from the recorded brain activity and then uses the decoded brain activity to control an assistive device in real time. Although BMIs are primarily being developed for use by severely paralyzed individuals, epilepsy patients undergoing invasive brain monitoring provide an opportunity to test the effectiveness of different invasive recording electrodes for use in BMI systems. This study investigated the ability to use SEEG electrodes for control of 2D cursor velocity in a BMI. Two patients who were undergoing SEEG for intractable epilepsy participated in this study. Participants were instructed to wiggle or rest the hand contralateral to their SEEG electrodes to control the horizontal velocity of a cursor on a screen. Simultaneously they were instructed to wiggle or rest their feet to control the vertical component of cursor velocity. The BMI system was designed to detect power spectral changes associated with hand and foot activity and translate those spectral changes into horizontal and vertical cursor movements in real time. During testing, participants used their decoded SEEG signals to move the brain-controlled cursor to radial targets that appeared on the screen. Although power spectral information from 28 to 32 electrode contacts were used for cursor control during the experiment, post hoc analysis indicated that better control may have been possible using only a single SEEG depth electrode containing multiple recording contacts in both hand and foot cortical areas. These results suggest that the advantages of using SEEG for epilepsy monitoring may also apply to using SEEG electrodes in BMI systems. Specifically, SEEG electrodes can target deeper brain structures, such as foot motor cortex, and both hand and foot areas can be targeted with a single SEEG electrode implanted percutaneously. Therefore, SEEG electrodes may be an attractive option for simple BMI systems that use power spectral modulation in hand and foot cortex for independent control of 2 degrees of freedom.

Full access

Jorge Gonzalez-Martinez, Jeffrey Mullin, Sumeet Vadera, Juan Bulacio, Gwyneth Hughes, Stephen Jones, Rei Enatsu and Imad Najm

Object

Despite its long-reported successful record, with almost 60 years of clinical use, the technical complexity regarding the placement of stereoelectroencephalography (SEEG) depth electrodes may have contributed to the limited widespread application of the technique in centers outside Europe. The authors report on a simplified and novel SEEG surgical technique in the extraoperative mapping of refractory focal epilepsy.

Methods

The proposed technique was applied in patients with medically refractory focal epilepsy. Data regarding general demographic information, method of electrode implantation, time of implantation, number of implanted electrodes, seizure outcome after SEEG-guided resections, and complications were prospectively collected.

Results

From March 2009 to April 2012, 122 patients underwent SEEG depth electrode implantation at the Cleveland Clinic Epilepsy Center in which the authors' technique was used. There were 65 male and 57 female patients whose mean age was 33 years (range 5–68 years). The group included 21 pediatric patients (younger than 18 years). Planning and implantations were performed in a single stage. The time for planning was, on average, 33 minutes (range 20–47 minutes), and the time for implantation was, on average, 107 minutes (range 47–150 minutes). Complications related to the SEEG technique were observed in 3 patients. The calculated risk of complications per electrode was 0.18%. The seizure-free rate after SEEG-guided resections was 62% in a mean follow-up period of 12 months.

Conclusions

The authors report on a safe, simplified, and less time-consuming method of SEEG depth electrode implantation, using standard and widely available surgical tools, making the technique a reasonable option for extraoperative monitoring of patients with medically intractable epilepsy in centers lacking the Talairach stereotactic armamentarium.

Full access

Maria Luisa Gandía-González, M. Elena Kusak, Nuria Martínez Moreno, Jorge Gutiérrez Sárraga, Germán Rey and Roberto Martínez Álvarez

Object

Jugulotympanic paragangliomas (JTPs) are rare benign tumors whose surgical treatment is usually associated with partial resection of the lesion, high morbidity, and even death. Gamma Knife radiosurgery (GKRS) has been reported as a useful treatment option. The goal of this retrospective study is to analyze the role of GKRS in tumor volume control and clinical outcomes of these patients.

Methods

A total of 75 patients with JTPs were treated with GKRS at the authors' center from 1995 to 2012. The authors analyzed those treated during this period to allow for a minimal observation time of 2 years. The MR images and clinical reports of these patients were reviewed to assess clinical and volumetric outcomes of the tumors. The radiological and clinical assessments, along with a group of prognostic factors measured, were analyzed using descriptive methods. The time to volumetric and clinical progression was analyzed using the Kaplan-Meier method. Prognostic factors were identified using log-rank statistics and multivariate Cox regression models.

Results

The mean follow-up was 86.4 months. The authors observed volumetric tumor control in 94.8% of cases. In 67.2% of cases, tumor volume decreased by a mean of 40.1% from the original size. Of patients with previous tinnitus, 54% reported complete recovery. Improvement of other symptoms was observed in 34.5% of cases. Overall, clinical control was achieved in 91.4% of cases. Previous embolization and familial history of paraganglioma were selected as significant prognostic factors for volumetric response to GKRS treatment in the univariate analysis. In multivariate analysis, no factors were significantly correlated with progression-free survival. No patient died of side effects related to GKRS treatment or tumor progression.

Conclusions

Gamma Knife radiosurgery is an effective, safe, and efficient therapeutic option for the treatment of these tumors as a first-line treatment or in conjunction with traditional surgery, endovascular treatment, or conventional fractionated radiotherapy.