Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jordan I. Gewirtz x
Clear All Modify Search
Restricted access

Jordan I. Gewirtz, Alex Skidmore, Matthew D. Smyth, David D. Limbrick Jr., Manu Goyal, Joshua S. Shimony, Robert C. McKinstry, Mari L. Groves and Jennifer M. Strahle

OBJECTIVE

The immediate and long-term risk of anesthesia in the pediatric population is controversial. Traditional spine MRI protocols require the patient to remain still during the examination, and in young children this frequently results in the need for sedation administration. The authors’ goal was to develop an abbreviated spine MRI protocol to reduce sedation administration in young patients undergoing spine MRI.

METHODS

After IRB approval, the medical records of all pediatric patients who underwent a fast spine MRI protocol between 2017 and 2019 were reviewed. The protocol consisted of T2-weighted half-Fourier acquisition single-shot turbo spin echo, T1-weighted turbo spin echo, and T2-weighted STIR sequences acquired in the sagittal plane. The total acquisition time was 2 minutes with no single sequence acquisition longer than 60 seconds. Interpretability of the scans was assessed in accordance with the radiology report in conjunction with the neurosurgeon’s clinical notes.

RESULTS

A total of 47 fast spine MRI sessions were performed in 45 patients. The median age at the time of the MRI was 2.4 years (25th–75th quartile, 1.1–4.3 years; range 0.16–18.58 years). The most common indication for imaging was to rule out or follow a known syrinx (n = 30), followed by the need to rule out or follow known spinal dysraphism (n = 22). There were no uninterpretable or unusable scans. Eight of 47 scans were noted to have moderate motion artifact limitations with respect to the quality of the scan. Seven patients underwent a subsequent MRI with a sedated standard spine protocol within 1 year from the fast scan, which confirmed the findings on the fast MRI protocol with no new findings identified.

CONCLUSIONS

The authors report the first pediatric series of a fast spine MRI protocol for use in young patients. The protocol does not require sedation and is able to identify and monitor syrinx, spinal dysraphism, and potentially other intraspinal anomalies.

Restricted access

Jennifer M. Strahle, Rukayat Taiwo, Christine Averill, James Torner, Jordan I. Gewirtz, Chevis N. Shannon, Christopher M. Bonfield, Gerald F. Tuite, Tammy Bethel-Anderson, Richard C. E. Anderson, Michael P. Kelly, Joshua S. Shimony, Ralph G. Dacey Jr., Matthew D. Smyth, Tae Sung Park, David D. Limbrick Jr. and for the Park-Reeves Syringomyelia Research Consortium

OBJECTIVE

In patients with Chiari malformation type I (CM-I) and a syrinx who also have scoliosis, clinical and radiological predictors of curve regression after posterior fossa decompression are not well known. Prior reports indicate that age younger than 10 years and a curve magnitude < 35° are favorable predictors of curve regression following surgery. The aim of this study was to determine baseline radiological factors, including craniocervical junction alignment, that might predict curve stability or improvement after posterior fossa decompression.

METHODS

A large multicenter retrospective and prospective registry of pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and a syrinx (≥ 3 mm in width) was reviewed for clinical and radiological characteristics of CM-I, syrinx, and scoliosis (coronal curve ≥ 10°) in patients who underwent posterior fossa decompression and who also had follow-up imaging.

RESULTS

Of 825 patients with CM-I and a syrinx, 251 (30.4%) were noted to have scoliosis present at the time of diagnosis. Forty-one (16.3%) of these patients underwent posterior fossa decompression and had follow-up imaging to assess for scoliosis. Twenty-three patients (56%) were female, the mean age at time of CM-I decompression was 10.0 years, and the mean follow-up duration was 1.3 years. Nine patients (22%) had stable curves, 16 (39%) showed improvement (> 5°), and 16 (39%) displayed curve progression (> 5°) during the follow-up period. Younger age at the time of decompression was associated with improvement in curve magnitude; for those with curves of ≤ 35°, 17% of patients younger than 10 years of age had curve progression compared with 64% of those 10 years of age or older (p = 0.008). There was no difference by age for those with curves > 35°. Tonsil position, baseline syrinx dimensions, and change in syrinx size were not associated with the change in curve magnitude. There was no difference in progression after surgery in patients who were also treated with a brace compared to those who were not treated with a brace for scoliosis.

CONCLUSIONS

In this cohort of patients with CM-I, a syrinx, and scoliosis, younger age at the time of decompression was associated with improvement in curve magnitude following surgery, especially in patients younger than 10 years of age with curves of ≤ 35°. Baseline tonsil position, syrinx dimensions, frontooccipital horn ratio, and craniocervical junction morphology were not associated with changes in curve magnitude after surgery.