Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jonathon J. Parker x
  • All content x
Clear All Modify Search
Full access

Soliman Oushy, Jonathon J. Parker, Kristen Campbell, Claire Palmer, Corbett Wilkinson, Nicholas V. Stence, Michael H. Handler, and David M. Mirsky

OBJECTIVE

Placement of a cerebrospinal fluid diversion device (i.e., shunt) is a routine pediatric neurosurgical procedure, often performed in the first weeks of life for treatment of congenital hydrocephalus. In the postoperative period, shunt placement may be complicated by subdural, catheter tract, parenchymal, and intraventricular hemorrhages. The authors observed a subset of infants and neonates who developed multifocal intraparenchymal hemorrhages (MIPH) following shunt placement and sought to determine any predisposing perioperative variables.

METHODS

A retrospective review of the electronic medical record at a tertiary-care children’s hospital was performed for the period 1998–2015. Inclusion criteria consisted of shunt placement, age < 30 days, and available pre- and postoperative brain imaging. The following data were collected and analyzed for each case: ventricular size ratios, laboratory values, clinical presentation, shunt and valve type, and operative timing and approach.

RESULTS

A total of 121 neonates met the inclusion criteria for the study, and 11 patients (9.1%) had MIPH following shunt placement. The preoperative frontal and occipital horn ratio (FOR) was significantly higher in the patients with MIPH than in those without (0.65 vs 0.57, p < 0.001). The change in FOR (∆FOR) after shunt placement was significantly greater in the MIPH group (0.14 vs 0.08, p = 0.04). Among neonates who developed MIPH, aqueductal stenosis was the most common etiology (45%). The type of shunt valve was associated with incidence of MIPH (p < 0.001). Preoperative clinical parameters, including head circumference, bulging fontanelle, and coagulopathy, were not significantly associated with development of MIPH.

CONCLUSIONS

MIPH represents an underrecognized complication of neonatal shunted hydrocephalus. Markers of severity of ventriculomegaly (FOR) and ventricular response to CSF diversion (∆FOR) were significantly associated with occurrence of MIPH. Choice of shunt and etiology of hydrocephalus were also significantly associated with MIPH. After adjusting for corrected age, etiology of hydrocephalus, and shunt setting, the authors found that ∆FOR after shunting was still associated with MIPH. A prospective study of MIPH prevention strategies and assessment of possible implications for patient outcomes is needed.

Free access

Yuhao Huang, Derek Yecies, Lisa Bruckert, Jonathon J. Parker, Allen L. Ho, Lily H. Kim, Linden Fornoff, Max Wintermark, Brenda Porter, Kristen W. Yeom, Casey H. Halpern, and Gerald A. Grant

OBJECTIVE

Completion corpus callosotomy can offer further remission from disabling seizures when a prior partial corpus callosotomy has failed and residual callosal tissue is identified on imaging. Traditional microsurgical approaches to section residual fibers carry risks associated with multiple craniotomies and the proximity to the medially oriented motor cortices. Laser interstitial thermal therapy (LITT) represents a minimally invasive approach for the ablation of residual fibers following a prior partial corpus callosotomy. Here, the authors report clinical outcomes of 6 patients undergoing LITT for completion corpus callosotomy and characterize the radiological effects of ablation.

METHODS

A retrospective clinical review was performed on a series of 6 patients who underwent LITT completion corpus callosotomy for medically intractable epilepsy at Stanford University Medical Center and Lucile Packard Children’s Hospital at Stanford between January 2015 and January 2018. Detailed structural and diffusion-weighted MR images were obtained prior to and at multiple time points after LITT. In 4 patients who underwent diffusion tensor imaging (DTI), streamline tractography was used to reconstruct and evaluate tract projections crossing the anterior (genu and rostrum) and posterior (splenium) parts of the corpus callosum. Multiple diffusion parameters were evaluated at baseline and at each follow-up.

RESULTS

Three pediatric (age 8–18 years) and 3 adult patients (age 30–40 years) who underwent completion corpus callosotomy by LITT were identified. Mean length of follow-up postoperatively was 21.2 (range 12–34) months. Two patients had residual splenium, rostrum, and genu of the corpus callosum, while 4 patients had residual splenium only. Postoperative complications included asymptomatic extension of ablation into the left thalamus and transient disconnection syndrome. Ablation of the targeted area was confirmed on immediate postoperative diffusion-weighted MRI in all patients. Engel class I–II outcomes were achieved in 3 adult patients, whereas all 3 pediatric patients had Engel class III–IV outcomes. Tractography in 2 adult and 2 pediatric patients revealed time-dependent reduction of fractional anisotropy after LITT.

CONCLUSIONS

LITT is a safe, minimally invasive approach for completion corpus callosotomy. Engel outcomes for completion corpus callosotomy by LITT were similar to reported outcomes of open completion callosotomy, with seizure reduction primarily observed in adult patients. Serial DTI can be used to assess the presence of tract projections over time but does not classify treatment responders or nonresponders.

Restricted access

Michael C. Jin, Jonathon J. Parker, Michael Zhang, Zack A. Medress, Casey H. Halpern, Gordon Li, John K. Ratliff, Gerald A. Grant, Robert S. Fisher, and Stephen Skirboll

OBJECTIVE

Status epilepticus (SE) is associated with significant mortality, cost, and risk of future seizures. In one of the first studies of SE after neurosurgery, the authors assess the incidence, risk factors, and outcome of postneurosurgical SE (PNSE).

METHODS

Neurosurgical admissions from the MarketScan Claims and Encounters database (2007 through 2015) were assessed in a longitudinal cross-sectional sample of privately insured patients who underwent qualifying cranial procedures in the US and were older than 18 years of age. The incidence of early (in-hospital) and late (postdischarge readmission) SE and associated mortality was assessed. Procedural, pathological, demographic, and anatomical covariates parameterized multivariable logistic regression and Cox models. Multivariable logistic regression and Cox proportional hazards models were used to study the incidence of early and late PNSE. A risk-stratification simulation was performed, combining individual predictors into singular risk estimates.

RESULTS

A total of 197,218 admissions (218,217 procedures) were identified. Early PNSE occurred during 637 (0.32%) of 197,218 admissions for cranial neurosurgical procedures. A total of 1045 (0.56%) cases of late PNSE were identified after 187,771 procedure admissions with nonhospice postdischarge follow-up. After correction for comorbidities, craniotomy for trauma, hematoma, or elevated intracranial pressure was associated with increased risk of early PNSE (adjusted OR [aOR] 1.538, 95% CI 1.183–1.999). Craniotomy for meningioma resection was associated with an increased risk of early PNSE compared with resection of metastases and parenchymal primary brain tumors (aOR 2.701, 95% CI 1.388–5.255). Craniotomies for infection or abscess (aHR 1.447, 95% CI 1.016–2.061) and CSF diversion (aHR 1.307, 95% CI 1.076–1.587) were associated with highest risk of late PNSE. Use of continuous electroencephalography in patients with early (p < 0.005) and late (p < 0.001) PNSE rose significantly over the study time period. The simulation regression model predicted that patients at high risk for early PNSE experienced a 1.10% event rate compared with those at low risk (0.07%). Similarly, patients predicted to be at highest risk for late PNSE were significantly more likely to eventually develop late PNSE than those at lowest risk (HR 54.16, 95% CI 24.99–104.80).

CONCLUSIONS

Occurrence of early and late PNSE was associated with discrete neurosurgical pathologies and increased mortality. These data provide a framework for prospective validation of clinical and perioperative risk factors and indicate patients for heightened diagnostic suspicion of PNSE.