Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: John T. Street x
Clear All Modify Search
Free access

George M. Ghobrial, Christopher M. Maulucci, Mitchell Maltenfort, Richard T. Dalyai, Alexander R. Vaccaro, Michael G. Fehlings, John Street, Paul M. Arnold and James S. Harrop

Object

Thoracolumbar spine injuries are commonly encountered in patients with trauma, accounting for almost 90% of all spinal fractures. Thoracolumbar burst fractures comprise a high percentage of these traumatic fractures (45%), and approximately half of the patients with this injury pattern are neurologically intact. However, a debate over complication rates associated with operative versus nonoperative management of various thoracolumbar fracture morphologies is ongoing, particularly concerning those patients presenting without a neurological deficit.

Methods

A MEDLINE search for pertinent literature published between 1966 and December 2013 was conducted by 2 authors (G.G. and R.D.), who used 2 broad search terms to maximize the initial pool of manuscripts for screening. These terms were “operative lumbar spine adverse events” and “nonoperative lumbar spine adverse events.”

Results

In an advanced MEDLINE search of the term “operative lumbar spine adverse events” on January 8, 2014, 1459 results were obtained. In a search of “nonoperative lumbar spine adverse events,” 150 results were obtained. After a review of all abstracts for relevance to traumatic thoracolumbar spinal injuries, 62 abstracts were reviewed for the “operative” group and 21 abstracts were reviewed for the “nonoperative” group. A total of 14 manuscripts that met inclusion criteria for the operative group and 5 manuscripts that met criteria for the nonoperative group were included.

There were a total of 919 and 436 patients in the operative and nonoperative treatment groups, respectively. There were no statistically significant differences between the groups with respect to age, sex, and length of stay. The mean ages were 43.17 years in the operative and 34.68 years in the nonoperative groups. The majority of patients in both groups were Frankel Grade E (342 and 319 in operative and nonoperative groups, respectively). Among the studies that reported the data, the mean length of stay was 14 days in the operative group and 20.75 in the nonoperative group.

The incidence of all complications in the operative and nonoperative groups was 300 (32.6%) and 21 (4.8%), respectively (p = 0.1065). There was no significant difference between the 2 groups with respect to the incidence of pulmonary, thromboembolic, cardiac, and gastrointestinal complications. However, the incidence of infections (pneumonia, urinary tract infection, wound infection, and sepsis) was significantly higher in the operative group (p = 0.000875). The incidence of instrumentation failure and need for revision surgery was 4.35% (40 of 919), a significant morbidity, and an event unique to the operative category (p = 0.00396).

Conclusions

Due to the limited number of high-quality studies, conclusions related to complication rates of operative and nonoperative management of thoracolumbar traumatic injuries cannot be definitively made. Further prospective, randomized studies of operative versus nonoperative management of thoracolumbar and lumbar spine trauma, with standardized definitions of complications and matched patient cohorts, will aid in properly defining the risk-benefit ratio of surgery for thoracolumbar spine fractures.

Full access

Christopher C. Gillis, John T. Street, Michael C. Boyd and Charles G. Fisher

A novel method of spinopelvic ring reconstruction after partial sacrectomy for a chondrosarcoma is described. Chondrosarcoma is one of the most common primary malignant bone tumors, and en bloc resection is the mainstay of treatment. Involvement of the pelvis as well as the sacrum and lumbar spine can result in a technically difficult challenge for en bloc resection and for achievement of appropriate load-bearing reconstruction.

After en bloc resection in their patient, the authors achieved reconstruction with a rod and screw construct including vascularized fibula graft as the main strut from the lumbar spine to the pelvis. Additionally, a cadaveric allograft strut was used as an adjunct for the pelvic ring. This is similar to a modified Galveston technique with vascularized fibula in place of the Galveston rods. The vascularized fibula provided appropriate biomechanical support, allowing the patient to return to independent ambulation. There was no tumor recurrence; neurological status remained stable; and the allograft construct integrated well and even increased in size on CT scans and radiographs in the course of a follow-up longer than 7 years.

Full access

John T. Street, R. Andrew Glennie, Nicolas Dea, Christian DiPaola, Zhi Wang, Michael Boyd, Scott J. Paquette, Brian K. Kwon, Marcel F. Dvorak and Charles G. Fisher

OBJECTIVE

The objective of this study was to determine if there is a significant difference in surgical site infection (SSI) when comparing the Wiltse and midline approaches for posterior instrumented interbody fusions of the lumbar spine and, secondarily, to evaluate if the reoperation rates and specific causes for reoperation were similar for both approaches.

METHODS

A total of 358 patients who underwent 1- or 2-level posterior instrumented interbody fusions for degenerative lumbar spinal pathology through either a midline or Wiltse approach were prospectively followed between March 2005 and January 2011 at a single tertiary care facility. A retrospective analysis was performed primarily to evaluate the incidence of SSI and the incidence and causes for reoperation. Secondary outcome measures included intraoperative complications, blood loss, and length of stay. A matched analysis was performed using the Fisher's exact test and a logistic regression model. The matched analysis controlled for age, sex, comorbidities, number of index levels addressed surgically, number of levels fused, and the use of bone grafting.

RESULTS

All patients returned for follow-up at 1 year, and adverse events were followed for 2 years. The rate of SSI was greater in the midline group (8 of 103 patients; 7.8%) versus the Wiltse group (1 of 103 patients; 1.0%) (p = 0.018). Fewer additional surgical procedures were performed in the Wiltse group (p = 0.025; OR 0.47; 95% CI 0.23–0.95). Proximal adjacent segment failure requiring reoperation occurred more frequently in the midline group (15 of 103 patients; 14.6%) versus the Wiltse group (6 of 103 patients; 5.8%) (p = 0.048). Blood loss was significantly lower in the Wiltse group (436 ml) versus the midline group (703 ml); however, there was no significant difference between the 2 groups in intraoperative complications or length of stay.

CONCLUSIONS

The patients who underwent the Wiltse approach had a decreased risk of wound breakdown and infection, less blood loss, and fewer reoperations than the midline patients. The risk of adjacent segment failure in short posterior constructs is lower with a Wiltse approach.

Restricted access

Jin W. Tee, Carly S. Rivers, Nader Fallah, Vanessa K. Noonan, Brian K. Kwon, Charles G. Fisher, John T. Street, Tamir Ailon, Nicolas Dea, Scott Paquette and Marcel F. Dvorak

OBJECTIVE

The aim of this study was to use decision tree modeling to identify optimal stratification groups considering both the neurological impairment and spinal column injury and to investigate the change in motor score as an example of a practical application. Inherent heterogeneity in spinal cord injury (SCI) introduces variation in natural recovery, compromising the ability to identify true treatment effects in clinical research. Optimized stratification factors to create homogeneous groups of participants would improve accurate identification of true treatment effects.

METHODS

The analysis cohort consisted of patients with acute traumatic SCI registered in the Vancouver Rick Hansen Spinal Cord Injury Registry (RHSCIR) between 2004 and 2014. Severity of neurological injury (American Spinal Injury Association Impairment Scale [AIS grades A–D]), level of injury (cervical, thoracic), and total motor score (TMS) were assessed using the International Standards for Neurological Classification of Spinal Cord Injury examination; morphological injury to the spinal column assessed using the AOSpine classification (AOSC types A–C, C most severe) and age were also included. Decision trees were used to determine the most homogeneous groupings of participants based on TMS at admission and discharge from in-hospital care.

RESULTS

The analysis cohort included 806 participants; 79.3% were male, and the mean age was 46.7 ± 19.9 years. Distribution of severity of neurological injury at admission was AIS grade A in 40.0% of patients, grade B in 11.3%, grade C in 18.9%, and grade D in 29.9%. The level of injury was cervical in 68.7% of patients and thoracolumbar in 31.3%. An AOSC type A injury was found in 33.1% of patients, type B in 25.6%, and type C in 37.8%. Decision tree analysis identified 6 optimal stratification groups for assessing TMS: 1) AOSC type A or B, cervical injury, and age ≤ 32 years; 2) AOSC type A or B, cervical injury, and age > 32–53 years; 3) AOSC type A or B, cervical injury, and age > 53 years; 4) AOSC type A or B and thoracic injury; 5) AOSC type C and cervical injury; and 6) AOSC type C and thoracic injury.

CONCLUSIONS

Appropriate stratification factors are fundamental to accurately identify treatment effects. Inclusion of AOSC type improves stratification, and use of the 6 stratification groups could minimize confounding effects of variable neurological recovery so that effective treatments can be identified.

Restricted access

Brian K. Kwon, Armin Curt, Lise M. Belanger, Arlene Bernardo, Donna Chan, John A. Markez, Stephen Gorelik, Gerard P. Slobogean, Hamed Umedaly, Mitch Giffin, Michael A. Nikolakis, John Street, Michael C. Boyd, Scott Paquette, Charles G. Fisher and Marcel F. Dvorak

Object

Ischemia is an important factor in the pathophysiology of secondary damage after traumatic spinal cord injury (SCI) and, in the setting of thoracoabdominal aortic aneurysm repair, can be the primary cause of paralysis. Lowering the intrathecal pressure (ITP) by draining CSF is routinely done in thoracoabdominal aortic aneurysm surgery but has not been evaluated in the setting of acute traumatic SCI. Additionally, while much attention is directed toward maintaining an adequate mean arterial blood pressure (MABP) in the acute postinjury phase, little is known about what is happening to the ITP during this period when spinal cord perfusion pressure (MABP − ITP) is important. The objectives of this study were to: 1) evaluate the safety and feasibility of draining CSF to lower ITP after acute traumatic SCI; 2) evaluate changes in ITP before and after surgical decompression; and 3) measure neurological recovery in relation to the drainage of CSF.

Methods

Twenty-two patients seen within 48 hours of injury were prospectively randomized to a drainage or no-drainage treatment group. In all cases a lumbar intrathecal catheter was inserted for 72 hours. Acute complications of headache/nausea/vomiting, meningitis, or neurological deterioration were carefully monitored. Acute Spinal Cord Injury motor scores were documented at baseline and at 6 months postinjury.

Results

On insertion of the catheter, mean ITP was 13.8 ± 1.3 mm Hg (± SD), and it increased to a mean peak of 21.7 ± 1.5 mm Hg intraoperatively. The difference between the starting ITP on catheter insertion and the observed peak intrathecal pressure after decompression was, on average, an increase of 7.9 ± 1.6 mm Hg (p < 0.0001, paired t-test). During the postoperative period, the peak recorded ITP in the patients randomized to the no-drainage group was 30.6 ± 2.3 mm Hg, which was significantly higher than the peak intraoperative ITP (p = 0.0098). During the same period, the peak recorded ITP in patients randomized to receive drainage was 28.1 ± 2.8 mm Hg, which was not statistically higher than the peak intraoperative ITP (p = 0.15).

Conclusions

The insertion of lumbar intrathecal catheters and the drainage of CSF were not associated with significant adverse events, although the cohort was small and only a limited amount of CSF was drained. Intraoperative decompression of the spinal cord results in an increase in the ITP measured caudal to the injury site. Increases in intrathecal pressure are additionally observed in the postoperative period. These increases in intrathecal pressure result in reduced spinal cord perfusion that will otherwise go undetected when measuring only the MABP. Characteristic changes in the observed intrathecal pressure waveform occur after surgical decompression, reflecting the restoration of CSF flow across the SCI site. As such, the waveform pattern may be used intraoperatively to determine if adequate decompression of the thecal sac has been accomplished.