Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: John Slevin x
Clear All Modify Search
Restricted access
Restricted access

John T. Slevin, Greg A. Gerhardt, Charles D. Smith, Don M. Gash, Richard Kryscio and Byron Young

Object. Glial cell line-derived neurotrophic factor (GDNF) has demonstrated significant antiparkinsonian actions in several animal models and in a recent pilot study in England in which four of five patients received bilateral putaminal delivery. In the present study the authors report on a 6-month unilateral intraputaminal GDNF infusion in 10 patients with advanced Parkinson disease (PD).

Methods. Patients with PD in a functionally defined on and off state were evaluated 1 week before and 1 and 4 weeks after intraputaminal catheter implantation in the side contralateral to the most affected side. Each patient was placed on a dose-escalation regimen of GDNF: 3, 10, and 30 µg/day at successive 8-week intervals, followed by a 1-month wash-out period.

The Unified Parkinson's Disease Rating Scale (UPDRS) total scores in the on and off states significantly improved 34 and 33%, respectively, at 24 weeks compared with baseline scores (95% confidence interval [CI] 18–47% for off scores and 16–51% for on scores). In addition, UPDRS motor scores in both the on and off states significantly improved by 30% at 24 weeks compared with baseline scores (95% CI 15–48% for off scores and 5–61% for on scores). Improvements occurred bilaterally, as measured by balance and gait and increased speed of hand movements. All significant improvements of motor function continued through the wash-out period. The only observed side effects were transient Lhermitte symptoms in two patients.

Conclusions. Analysis of the data in this open-label study demonstrates the safety and potential efficacy of unilateral intraputaminal GDNF infusion. Unilateral administration of the protein resulted in significant, sustained bilateral effects.

Restricted access

Craig G. van Horne, Jorge E. Quintero, John T. Slevin, Amelia Anderson-Mooney, Julie A. Gurwell, Andrew S. Welleford, John R. Lamm, Renee P. Wagner and Greg A. Gerhardt

OBJECTIVE

Currently, there is no treatment that slows or halts the progression of Parkinson’s disease. Delivery of various neurotrophic factors to restore dopaminergic function has become a focus of study in an effort to fill this unmet need for patients with Parkinson’s disease. Schwann cells provide a readily available source of such factors. This study presents a 12-month evaluation of safety and feasibility, as well as the clinical response, of implanting autologous peripheral nerve grafts into the substantia nigra of patients with Parkinson’s disease at the time of deep brain stimulation (DBS) surgery.

METHODS

Standard DBS surgery targeting the subthalamic nucleus was performed in 8 study participants. After DBS lead implantation, a section of the sural nerve containing Schwann cells was harvested and unilaterally grafted to the substantia nigra. Adverse events were continually monitored. Baseline clinical data were obtained during standard preoperative evaluations. Clinical outcome data were obtained with postoperative clinical evaluations, neuropsychological testing, and MRI at 1 year after surgery.

RESULTS

All 8 participants were implanted with DBS systems and grafts. Adverse event profiles were comparable to those of standard DBS surgery with the exception of 1 superficial infection at the sural nerve harvest site. Three participants also reported numbness in the distribution of the sural nerve distal to the harvest site. Motor scores on Unified Parkinson’s Disease Rating Scale (UPDRS) part III while the participant was off therapy at 12 months improved from baseline (mean ± SD 25.1 ± 15.9 points at 12 months vs 32.5 ± 9.7 points at baseline). An analysis of the lateralized UPDRS scores also showed a greater overall reduction in scores on the side contralateral to the graft.

CONCLUSIONS

Peripheral nerve graft delivery to the substantia nigra at the time of DBS surgery is feasible and safe based on the results of this initial pilot study. Clinical outcome data from this phase I trial suggests that grafting may have some clinical benefit and certainly warrants further study to determine if this is an efficacious and neurorestorative therapy.

Clinical trial registration no.: NCT01833364 (clinicaltrials.gov)

Restricted access

John T. Slevin, Don M. Gash, Charles D. Smith, Greg A. Gerhardt, Richard Kryscio, Himachandra Chebrolu, Ashley Walton, Renee Wagner and A. Byron Young

Object

Glial cell line–derived neurotrophic factor (GDNF) infused unilaterally into the putamen for 6 months has been previously shown to improve significantly motor functions and quality of life measures in 10 patients with Parkinson disease (PD) in a Phase I trial. In the present study the authors report the safety and efficacy of continuous treatment for a minimum of 1 year. After the trial was halted by the drug sponsor, the patients were monitored for an additional 1 year during which the effects of drug withdrawal were evaluated.

Methods

During the extended study period, patients received a 30-μg/day unilateral intraputamenal infusion of GDNF at a basal infusion rate supplemented with pulsed boluses every 6 hours at a convection-enhanced delivery rate to increase tissue penetration of the protein. When the study was stopped, the delivery system was reprogrammed to deliver sterile saline at the basal infusion rate of 2 μl/hour.

The Unified Parkinson's Disease Rating Scale (UPDRS) total scores after 1 year of therapy were improved by 42 and 38% in the off- and on-medication states; the motor UPDRS scores were also improved 45 and 39%, respectively. Benefits from treatment were lost by 9 to 12 months after the cessation of GDNF infusion. The UPDRS scores returned to their baseline and the patients required higher levels of conventional antiparkinsonian drugs to treat symptoms. After 11 months of treatment, the delivery system had to be removed in one patient because of risk of infection. Seven patients developed antibodies to GDNF but without evident clinical sequelae. There was no evidence for GDNF-induced cerebellar toxicity, as evaluated by magnetic resonance imaging and clinical testing.

Conclusions

The unilateral administration of GDNF results in significant, sustained bilateral benefits in patients with PD. These improvements are lost within 9 months of drug withdrawal. Safety concerns with GDNF therapy can be closely monitored and managed.

Full access

John T. Slevin, Don M. Gash, Charles D. Smith, Greg A. Gerhardt, Richard Kryscio, Himachandra Chebrolu, Ashley Walton, Renee Wagner and A. Byron Young

Object

Glial cell line–derived neurotrophic factor (GDNF) infused unilaterally into the putamen for 6 months was previously shown to improve motor functions and quality of life measures significantly in 10 patients with Parkinson disease (PD) in a Phase I trial. In this study the authors report the safety and efficacy of continuous treatment for 1 year or more. After the trial was halted by the sponsor, the patients were monitored for an additional year to evaluate the effects of drug withdrawal.

Methods

During the extended study, patients received unilateral intraputaminal infusion of 30 μg/day GDNF at a basal infusion rate supplemented with pulsed boluses every 6 hours at a convection-enhanced delivery rate to increase tissue penetration of the protein. When the study was stopped, the delivery system was reprogrammed to deliver sterile saline at the basal infusion rate of 2 μl/hour.

The Unified PD Rating Scale (UPDRS) total scores after 1 year of therapy were improved by 42 and 38%, respectively, in the “off” and “on” states. Motor UPDRS scores were also improved: 45 and 39% in the off and on conditions, respectively. Benefits from treatment were lost by 9 to 12 months after GDNF infusion was halted. At that time, the patients had returned to their baseline UPDRS scores and required higher levels of conventional antiparkinsonian drugs to treat symptoms. After 11 months of treatment, the delivery system had to be removed in one patient because of the risk of infection. In seven patients antibodies to GDNF developed, with no evidence of clinical sequelae. There was also no evidence of GDNF-induced cerebellar toxicity, as evaluated using magnetic resonance imaging analysis and clinical testing.

Conclusions

Unilateral administration of GDNF results in significant, sustained bilateral benefits. These improvements are lost within 9 months after drug withdrawal. Safety concerns with GDNF therapy can be closely monitored and managed.

Full access

Craig G. van Horne, Jorge E. Quintero, Julie A. Gurwell, Renee P. Wagner, John T. Slevin and Greg A. Gerhardt

OBJECTIVE

One avenue of intense efforts to treat Parkinson's disease (PD) involves the delivery of neurotrophic factors to restore dopaminergic cell function. A source of neurotrophic factors that could be used is the Schwann cell from the peripheral nervous system. The authors have begun an open-label safety study to examine the safety and feasibility of implanting an autologous peripheral nerve graft into the substantia nigra of PD patients undergoing deep brain stimulation (DBS) surgery.

METHODS

Multistage DBS surgery targeting the subthalamic nucleus was performed using standard procedures in 8 study participants. After the DBS leads were implanted, a section of sural nerve containing Schwann cells was excised and unilaterally delivered into the area of the substantia nigra. Adverse events were continuously monitored.

RESULTS

Eight of 8 participants were implanted with DBS systems and grafts. Adverse event profiles were comparable to those of standard DBS surgery. Postoperative MR images did not reveal edema, hemorrhage, or significant signal changes in the graft target region. Three participants reported a patch of numbness on the outside of the foot below the sural nerve harvest site.

CONCLUSIONS

Based on the safety outcome of the procedure, targeted peripheral nerve graft delivery to the substantia nigra at the time of DBS surgery is feasible and may provide a means to deliver neurorestorative therapy.

Clinical trial registration no.: NCT01833364 (clinicaltrials.gov)