Search Results

You are looking at 1 - 10 of 26 items for

  • Author or Editor: John S. Yu x
Clear All Modify Search
Restricted access

John N. K. Hsiang, Theresa Yeung, Ashley L. M. Yu and Wai S. Poon

✓ The generally accepted definition of mild head injury includes Glasgow Coma Scale (GCS) scores of 13 to 15. However, many studies have shown that there is a heterogeneous pathophysiology among patients with GCS scores in this range. The current definition of mild head injury is misleading because patients classified in this category can have severe sequelae.

Therefore, a prospective study of 1360 head-injured patients with GCS scores ranging from 13 to 15 who were admitted to the neurosurgery service during 1994 and 1995 was undertaken to modify the current definition of mild head injury. Data regarding patients' age, sex, GCS score, radiographic findings, neurosurgical intervention, and 6-month outcome were collected and analyzed.

The results of this study showed that patients with lower GCS scores tended to have suffered more serious injury. There was a statistically significant trend across GCS scores for percentage of patients with positive acute radiographic findings, percentage receiving neurosurgical interventions, and percentage with poor outcome. The presence of postinjury vomiting did not correlate with findings of acute radiographic abnormalities.

Based on the results of this study, the authors divided all head-injured patients with GCS scores ranging from 13 to 15 into mild head injury and high-risk mild head injury groups. Mild head injury is defined as a GCS score of 15 without acute radiographic abnormalities, whereas high-risk mild head injury is defined as GCS scores of 13 or 14, or a GCS score of 15 with acute radiographic abnormalities. This more precise definition of mild head injury is simple to use and may help avoid the confusion caused by the current classification.

Restricted access

John S. Yu, M. Priscilla Short, James Schumacher, Paul H. Chapman and Griffith R. Harsh IV

✓ The authors describe two cases of intramedullary hemorrhage caused by thoracic hemangioblastoma. Both patients presented with acute paraplegia. The lesion in the first case was diagnosed by myelography and in the second by magnetic resonance imaging. Emergency surgical evacuation of the intramedullary hematoma and tumor was performed in these patients. Hemangioblastoma was confirmed by histopathological examination in both cases. Both patients remain paraplegic after 7 and 1 years, respectively. Intramedullary hemorrhage is a rare and devastating effect of spinal hemangioblastoma.

Restricted access
Full access

Patrizia Tunici, Dwain Irvin, Gentao Liu, Xiangpeng Yuan, Zeng Zhaohui, Hiushan Ng and John S. Yu

✓ The observation of similarities between the self-renewal mechanisms of stem cells and cancer cells has led to the new concept of the cancer stem cell. In cases of leukemia, multiple myeloma, and breast cancer, cells with a high self-renewal potential have been identified. Furthermore, investigators have shown these cells' ability to drive the formation and growth of the tumor. Brain tumors have also been reported to possess a subpopulation of cancer stemlike cells that have the ability to proliferate, self-renew, and be multipotent. When grafted into mice, these cells are also able to generate a tumor that recapitulates that of the patient from whom the cells were derived. The identification and characterization of this new category of cells call for new therapies capable of selectively targeting and killing these multifaceted cells.

Restricted access

Kwan-Hon Chan, Edward C. S. Lai, Henry Tuen, John H. K. Ngan, Francis Mok, Yiu-Wah Fan, Ching-Fai Fung and Wan-Ching Yu

✓ To determine the efficacy of ranitidine in preventing clinically acute overt gastroduodenal (GD) complications (bleeding and/or perforation) after neurosurgery, 101 patients with nontraumatic cerebral disease considered at high risk of developing postoperative GD complications were randomized in a standard double-blind manner to receive either ranitidine (50 mg every 6 hours) or placebo medication preoperatively. Postoperative serial GD endoscopy was used to document the occurrence of complications: an overt symptomatic complication was defined as bleeding requiring blood transfusion and/or surgery.

Fifty-two patients received ranitidine and 49 received a placebo preoperatively; 30 developed overt GD bleeding; nine of these received ranitidine and 21 received a placebo. Ranitidine significantly reduced the incidence of bleeding (p < 0.05). Multivariate logistic regression analysis revealed three factors of independent significance in predicting overt GD bleeding: use of a placebo drug, a gastric pH of less than 4, and a high daily volume of gastric output.

The authors conclude that ranitidine is useful in preventing postoperative GD complications in high-risk neurosurgical patients.

Restricted access

Chirag G. Patil, Anthony Yi, Adam Elramsisy, Jethro Hu, Debraj Mukherjee, Dwain K. Irvin, John S. Yu, Serguei I. Bannykh, Keith L. Black and Miriam Nuño

Object

The prognosis of patients with glioblastoma who present with multifocal disease is not well documented. The objective of this study was to determine whether multifocal disease on initial presentation is associated with worse survival.

Methods

The authors retrospectively reviewed records of 368 patients with newly diagnosed glioblastoma and identified 47 patients with multifocal tumors. Each patient with a multifocal tumor was then matched with a patient with a solitary glioblastoma on the basis of age, Karnofsky Performance Scale (KPS) score, and extent of resection, using a propensity score matching methodology. Radiation and temozolomide treatments were also well matched between the 2 cohorts. Kaplan-Meier estimates and log-rank tests were used to compare patient survival.

Results

The incidence of multifocal tumors was 12.8% (47/368). The median age of patients with multifocal tumors was 61 years, 76.6% had KPS scores ≥ 70, and 87.2% underwent either a biopsy or partial resection of their tumors. The 47 patients with multifocal tumors were almost perfectly matched on the basis of age (p = 0.97), extent of resection (p = 1.0), and KPS score (p = 0.80) compared with 47 patients with a solitary glioblastoma. Age (>65 years), partial resection or biopsy, and low KPS score (<70) were associated with worse median survival within the multifocal group. In the multifocal group, 19 patients experienced tumor progression on postradiation therapy MRI, compared with 11 patients (26.8%) with tumor progression in the unifocal group (p = 0.08). Patients with multifocal tumors experienced a significantly shorter median overall survival of 6 months (95% CI 4–10 months), compared with the 11-month median survival (95% CI 10–19 months) of the matched solitary glioblastoma group (p = 0.02, log-rank test). Two-year survival rates were 4.3% for patients with multifocal tumors and 29.0% for the unifocal cohort. Patients with newly diagnosed multifocal tumors were found to have an almost 2-fold increase in the hazard of death compared with patients with solitary glioblastoma (hazard ratio 1.8, 95% CI 1.1–3.1; p = 0.02). Tumor samples were analyzed for expression of phosphorylated mitogen-activated protein kinase, phosphatase and tensin homolog, O6-methylguanine-DNA methyltransferase, laminin β1 and β2, as well as epidermal growth factor receptor amplification, and no significant differences in expression profile between the multifocal and solitary glioblastoma groups was found.

Conclusions

Patients with newly diagnosed multifocal glioblastoma on presentation experience significantly worse survival than patients with solitary glioblastoma. Patients with multifocal tumors continue to pose a therapeutic challenge in the temozolomide era and magnify the challenges faced while treating patients with malignant gliomas.

Restricted access

Alireza M. Mohammadi, Jason L. Schroeder, Lilyana Angelov, Samuel T. Chao, Erin S. Murphy, Jennifer S. Yu, Gennady Neyman, Xuefei Jia, John H. Suh, Gene H. Barnett and Michael A. Vogelbaum

OBJECTIVE

The impact of the stereotactic radiosurgery (SRS) prescription dose (PD) on local progression and radiation necrosis for small (≤ 2 cm) brain metastases was evaluated.

METHODS

An institutional review board–approved retrospective review was performed on 896 patients with brain metastases ≤ 2 cm (3034 tumors) who were treated with 1229 SRS procedures between 2000 and 2012. Local progression and/or radiation necrosis were the primary end points. Each tumor was followed from the date of radiosurgery until one of the end points was reached or the last MRI follow-up. Various criteria were used to differentiate tumor progression and radiation necrosis, including the evaluation of serial MRIs, cerebral blood volume on perfusion MR, FDG-PET scans, and, in some cases, surgical pathology. The median radiographic follow-up per lesion was 6.2 months.

RESULTS

The median patient age was 56 years, and 56% of the patients were female. The most common primary pathology was non–small cell lung cancer (44%), followed by breast cancer (19%), renal cell carcinoma (14%), melanoma (11%), and small cell lung cancer (5%). The median tumor volume and median largest diameter were 0.16 cm3 and 0.8 cm, respectively. In total, 1018 lesions (34%) were larger than 1 cm in maximum diameter. The PD for 2410 tumors (80%) was 24 Gy, for 408 tumors (13%) it was 19 to 23 Gy, and for 216 tumors (7%) it was 15 to 18 Gy. In total, 87 patients (10%) had local progression of 104 tumors (3%), and 148 patients (17%) had at least radiographic evidence of radiation necrosis involving 199 tumors (7%; 4% were symptomatic). Univariate and multivariate analyses were performed for local progression and radiation necrosis. For local progression, tumors less than 1 cm (subhazard ratio [SHR] 2.32; p < 0.001), PD of 24 Gy (SHR 1.84; p = 0.01), and additional whole-brain radiation therapy (SHR 2.53; p = 0.001) were independently associated with better outcome. For the development of radiographic radiation necrosis, independent prognostic factors included size greater than 1 cm (SHR 2.13; p < 0.001), location in the corpus callosum (SHR 5.72; p < 0.001), and uncommon pathologies (SHR 1.65; p = 0.05). Size (SHR 4.78; p < 0.001) and location (SHR 7.62; p < 0.001)—but not uncommon pathologies—were independent prognostic factors for the subgroup with symptomatic radiation necrosis.

CONCLUSIONS

A PD of 24 Gy results in significantly better local control of metastases measuring < 2 cm than lower doses. In addition, tumor size is an independent prognostic factor for both local progression and radiation necrosis. Some tumor pathologies and locations may also contribute to an increased risk of radiation necrosis.

Restricted access

Rupesh Kotecha, Jacob A. Miller, Vyshak A. Venur, Alireza M. Mohammadi, Samuel T. Chao, John H. Suh, Gene H. Barnett, Erin S. Murphy, Pauline Funchain, Jennifer S. Yu, Michael A. Vogelbaum, Lilyana Angelov and Manmeet S. Ahluwalia

OBJECTIVE

The goal of this study was to investigate the impact of stereotactic radiosurgery (SRS), BRAF status, and targeted and immune-based therapies on the recurrence patterns and factors associated with overall survival (OS) among patients with melanoma brain metastasis (MBM).

METHODS

A total of 366 patients were treated for 1336 MBMs; a lesion-based analysis was performed on 793 SRS lesions. The BRAF status was available for 78 patients: 35 had BRAF mut and 43 had BRAF wild-type (BRAF-WT) lesions. The Kaplan-Meier method evaluated unadjusted OS; cumulative incidence analysis determined the incidences of local failure (LF), distant failure, and radiation necrosis (RN), with death as a competing risk.

RESULTS

The 12-month OS was 24% (95% CI 20%–29%). On multivariate analysis, younger age, lack of extracranial metastases, better Karnofsky Performance Status score, and fewer MBMs, as well as treatment with BRAF inhibitors (BRAFi), anti–PD-1/CTLA-4 therapy, or cytokine therapy were significantly associated with OS. For patients who underwent SRS, the 12-month LF rate was lower among those with BRAF mut lesions (6%, 95% CI 2%–11%) compared with those with BRAF-WT lesions (22%, 95% CI 13%–32%; p < 0.01). The 12-month LF rates among lesions treated with BRAFi and PD-1/CTLA-4 agents were 1% (95% CI 1%–4%) and 7% (95% CI 1%–13%), respectively. On multivariate analysis, BRAF inhibition within 30 days of SRS was protective against LF (HR 0.08, 95% CI 0.01–0.55; p = 0.01). The 12-month rates of RN were low among lesions treated with BRAFi (0%, 95% CI 0%–0%), PD-1/CTLA-4 inhibitors (2%, 95% CI 1%–5%), and cytokine therapies (6%, 95% CI 1%–13%).

CONCLUSIONS

Prognostic schema should incorporate BRAFi or immunotherapy status and use of targeted therapies. Treatment with a BRAF inhibitor within 4 weeks of SRS improves local control without an increased risk of RN.

Restricted access

Aditya Juloori, Jacob A. Miller, Shireen Parsai, Rupesh Kotecha, Manmeet S. Ahluwalia, Alireza M. Mohammadi, Erin S. Murphy, John H. Suh, Gene H. Barnett, Jennifer S. Yu, Michael A. Vogelbaum, Brian Rini, Jorge Garcia, Glen H. Stevens, Lilyana Angelov and Samuel T. Chao

OBJECTIVE

The object of this retrospective study was to investigate the impact of targeted therapies on overall survival (OS), distant intracranial failure, local failure, and radiation necrosis among patients treated with radiation therapy for renal cell carcinoma (RCC) metastases to the brain.

METHODS

All patients diagnosed with RCC brain metastasis (BM) between 1998 and 2015 at a single institution were included in this study. The primary outcome was OS, and secondary outcomes included local failure, distant intracranial failure, and radiation necrosis. The timing of targeted therapies was recorded. Multivariate Cox proportional-hazards regression was used to model OS, while multivariate competing-risks regression was used to model local failure, distant intracranial failure, and radiation necrosis, with death as a competing risk.

RESULTS

Three hundred seventy-six patients presented with 912 RCC BMs. Median OS was 9.7 months. Consistent with the previously validated diagnosis-specific graded prognostic assessment (DS-GPA) for RCC BM, Karnofsky Performance Status (KPS) and number of BMs were the only factors prognostic for OS. One hundred forty-seven patients (39%) received vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs). Median OS was significantly greater among patients receiving TKIs (16.8 vs 7.3 months, p < 0.001). Following multivariate analysis, KPS, number of metastases, and TKI use remained significantly associated with OS.

The crude incidence of local failure was 14.9%, with a 12-month cumulative incidence of 13.4%. TKIs did not significantly decrease the 12-month cumulative incidence of local failure (11.4% vs 14.5%, p = 0.11). Following multivariate analysis, age, number of BMs, and lesion size remained associated with local failure. The 12-month cumulative incidence of radiation necrosis was 8.0%. Use of TKIs within 30 days of SRS was associated with a significantly increased 12-month cumulative incidence of radiation necrosis (10.9% vs 6.4%, p = 0.04).

CONCLUSIONS

Use of targeted therapies in patients with RCC BM treated with intracranial SRS was associated with improved OS. However, the use of TKIs within 30 days of SRS increases the rate of radiation necrosis without improving local control or reducing distant intracranial failure. Prospective studies are warranted to determine the optimal timing to reduce the rate of necrosis without detracting from survival.

Free access

Benjamin H. Kann, James B. Yu, John M. Stahl, James E. Bond, Christopher Loiselle, Veronica L. Chiang, Ranjit S. Bindra, Jason L. Gerrard and David J. Carlson

OBJECTIVE

Functional Gamma Knife radiosurgery (GKRS) procedures have been increasingly used for treating patients with tremor, trigeminal neuralgia (TN), and refractory obsessive-compulsive disorder. Although its rates of toxicity are low, GKRS has been associated with some, if low, risks for serious sequelae, including hemiparesis and even death. Anecdotal reports have suggested that even with a standardized prescription dose, rates of functional GKRS toxicity increase after replacement of an old cobalt-60 source with a new source. Dose rate changes over the course of the useful lifespan of cobalt-60 are not routinely considered in the study of patients treated with functional GKRS, but these changes may be associated with significant variation in the biologically effective dose (BED) delivered to neural tissue.

METHODS

The authors constructed a linear-quadratic model of BED in functional GKRS with a dose-protraction factor to correct for intrafraction DNA-damage repair and used standard single-fraction doses for trigeminal nerve ablation for TN (85 Gy), thalamotomy for tremor (130 Gy), and capsulotomy for obsessive-compulsive disorder (180 Gy). Dose rate and treatment time for functional GKRS involving 4-mm collimators were derived from calibrations in the authors' department and from the cobalt-60 decay rate. Biologically plausible values for the ratio for radiosensitivity to fraction size (α/β) and double-strand break (DSB) DNA repair halftimes (τ) were estimated from published experimental data. The biphasic characteristics of DSB repair in normal tissue were accounted for in deriving an effective τ1 halftime (fast repair) and τ2 halftime (slow repair). A sensitivity analysis was performed with a range of plausible parameter values.

RESULTS

After replacement of the cobalt-60 source, the functional GKRS dose rate rose from 1.48 to 2.99 Gy/min, treatment time fell, and estimated BED increased. Assuming the most biologically plausible parameters, source replacement resulted in an immediate relative BED increase of 11.7% for GKRS-based TN management with 85 Gy, 15.6% for thalamotomy with 130 Gy, and 18.6% for capsulotomy with 180 Gy. Over the course of the 63-month lifespan of the cobalt-60 source, BED decreased annually by 2.2% for TN management, 3.0% for thalamotomy, and 3.5% for capsulotomy.

CONCLUSIONS

Use of a new cobalt-60 source after replacement of an old source substantially increases the predicted BED for functional GKRS treatments for the same physical dose prescription. Source age, dose rate, and treatment time should be considered in the study of outcomes after high-dose functional GKRS treatments. Animal and clinical studies are needed to determine how this potential change in BED contributes to GKRS toxicity and whether technical adjustments should be made to reduce dose rates or prescription doses with newer cobalt-60 sources.