Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: John P. Kirkpatrick x
  • All content x
Clear All Modify Search
Full access

Michael K. Tso, Myunghyun M. Lee, Chad G. Ball, William F. Morrish, Alim P. Mitha, Andrew W. Kirkpatrick, and John H. Wong

OBJECTIVE

Blunt cerebrovascular injury (BCVI) occurs in approximately 1% of the blunt trauma population and may lead to stroke and death. Early vascular imaging in asymptomatic patients at high risk of having BCVI may lead to earlier diagnosis and possible stroke prevention. The objective of this study was to determine if the implementation of a formalized asymptomatic BCVI screening protocol with CT angiography (CTA) would lead to improved BCVI detection and stroke prevention.

METHODS

Patients with vascular imaging studies were identified from a prospective trauma registry at a single Level 1 trauma center between 2002 and 2008. Detection of BCVI and stroke rates were compared during the 3-year periods before and after implementation of a consensus-based asymptomatic BCVI screening protocol using CTA in 2005.

RESULTS

A total of 5480 patients with trauma were identified. The overall BCVI detection rate remained unchanged postprotocol compared with preprotocol (0.8% [24 of 3049 patients] vs 0.9% [23 of 2431 patients]; p = 0.53). However, postprotocol there was a trend toward a decreased risk of stroke secondary to BCVI on a trauma population basis (0.23% [7 of 3049 patients] vs 0.53% [13 of 2431 patients]; p = 0.06). Overall, 75% (35 of 47) of patients with BCVI were treated with antiplatelet agents, but no patient developed new or progressive intracranial hemorrhage despite 70% of these patients having concomitant traumatic brain injury.

CONCLUSIONS

The results of this study suggest that a CTA screening protocol for BCVI may be of clinical benefit with possible reduction in ischemic complications. The treatment of BCVI with antiplatelet agents appears to be safe.

Restricted access

Peter J. Kirkpatrick, Pietr Smielewski, Peter C. Whitfield, Marik Czosnyka, David Menon, and John D. Pickard

✓ Near-infrared spectroscopy was used to monitor changes in the cerebral oxygenation state in 13 patients during carotid endarterectomy. Variations in the levels of the chromophores (oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and oxidized cytochrome (CytO2)), and the total hemoglobin content (tHb) were compared with changes in middle cerebral artery flow velocity measured using transcranial Doppler ultrasonography. Of eight patients who showed a fall in flow velocity on application of the internal carotid artery cross-clamp, seven demonstrated a rapid and closely correlated fall in HbO2 signal, and an increase in Hb. Levels of CytO2 and tHb remained unchanged. During endarterectomy, recovery of the HbO2 and Hb levels toward preclamp baseline values occurred in three of these patients. Intraoperative shunts accelerated recovery of HbO2 and Hb signals in two of three individuals. Release of the internal carotid cross-clamp resulted in a rapid increase in HbO2 and decrease in Hb signal in those patients in whom spontaneous recovery had not occurred; in five instances, a hyperemia evolved with raised flow velocity and HbO2 to above baseline values. Cross-clamping and subsequent reperfusion of the external carotid artery had no effect on any parameter measured. The authors conclude that near-infrared spectroscopy can register changes in cerebral oxygenation during carotid endarterectomy without significant contamination from extracranial tissues.

Restricted access

Patient outcomes and tumor control in single-fraction versus hypofractionated stereotactic body radiation therapy for spinal metastases

Presented at the 2020 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Christine Park, Elizabeth P. Howell, Vikram A. Mehta, Luis Ramirez, Meghan J. Price, Scott R. Floyd, John P. Kirkpatrick, Jordan Torok, Muhammad M. Abd-El-Barr, Isaac O. Karikari, and C. Rory Goodwin

OBJECTIVE

Stereotactic body radiation therapy (SBRT) offers efficient, noninvasive treatment of spinal neoplasms. Single-fraction (SF) high-dose SBRT has a relatively narrow therapeutic window, while hypofractionated delivery of SBRT may have an improved safety profile with similar efficacy. Because the optimal approach of delivery is unknown, the authors examined whether hypofractionated SBRT improves pain and/or functional outcomes and results in better tumor control compared with SF-SBRT.

METHODS

This is a single-institution retrospective study of adult patients with spinal metastases treated with SF- or three-fraction (3F) SBRT from 2008 to 2019. Demographics and baseline characteristics, radiographic data, and posttreatment outcomes at a minimum follow-up of 3 months are reported.

RESULTS

Of the 156 patients included in the study, 70 (44.9%) underwent SF-SBRT (median total dose 1700 cGy) and 86 (55.1%) underwent 3F-SBRT (median total dose 2100 cGy). At baseline, a higher proportion of patients in the 3F-SBRT group had a worse baseline profile, including severity of pain (p < 0.05), average use of pain medication (p < 0.001), and functional scores (p < 0.05) compared with the SF-SBRT cohort. At the 3-month follow-up, the 3F-SBRT cohort experienced a greater frequency of improvement in pain compared with the SF-SBRT group (p < 0.05). Furthermore, patients treated with 3F-SBRT demonstrated a higher frequency of improved Karnofsky Performance Scale (KPS) scores (p < 0.05) compared with those treated with SF-SBRT, with no significant difference in the frequency of improvement in modified Rankin Scale scores. Local tumor control did not differ significantly between the two cohorts.

CONCLUSIONS

Patients who received spinal 3F-SBRT more frequently achieved significant pain relief and an increased frequency of improvement in KPS compared with those treated with SF-SBRT. Local tumor control was similar in the two groups. Future work is needed to establish the relationship between fractionation schedule and clinical outcomes.

Full access

Xiao Wu, David Durand, Vivek B. Kalra, Renu Liu, and Ajay Malhotra

Restricted access

Arun K. Gupta, Peter J. Hutchinson, Tim Fryer, Pippa G. Al-Rawi, Dot A. Parry, Pawan S. Minhas, Rupert Kett-White, Peter J. Kirkpatrick, Julian C. Mathews, Steve Downey, Franklin Aigbirhio, John Clark, John D. Pickard, and David K. Menon

Object. The benefits of measuring cerebral oxygenation in patients with brain injury are well accepted; however, jugular bulb oximetry, which is currently the most popular monitoring technique used has several shortcomings. The goal of this study was to validate the use of a new multiparameter sensor that measures brain tissue oxygenation and metabolism (Neurotrend) by comparing it with positron emission tomography (PET) scanning.

Methods. A Neurotrend sensor was inserted into the frontal region of the brain in 19 patients admitted to the neurointensive care unit. After a period of stabilization, the patients were transferred to the PET scanner suite where C15O, 15O2, and H2 15O PET scans were obtained to facilitate calculation of regional cerebral blood volume, O2 metabolism, blood flow, and O2 extraction fraction (OEF). Patients were given hyperventilation therapy to decrease arterial CO2 by approximately 1 kPa (7.5 mm Hg) and the same sequence of PET scans was repeated. For each scanning sequence, end-capillary O2 tension (PvO2) was calculated from the OEF and compared with the reading of brain tissue O2 pressure (PbO2) provided by the sensor.

In three patients the sensor was inserted into areas of contusion and these patients were eliminated from the analysis. In the subset of 16 patients in whom the sensor was placed in healthy brain, no correlation was found between the absolute values of PbO2 and PvO2 (r = 0.2, p = 0.29); however a significant correlation was obtained between the change in PbO2 (ΔPbO2) and the change in PvO2 (ΔPvO2) produced by hyperventilation in a 20-mm region of interest around the sensor (ρ = 0.78, p = 0.0035).

Conclusions. The lack of correlation between the absolute values of PbO2 and PvO2 indicates that PbO2 cannot be used as a substitute for PvO2. Nevertheless, the positive correlation between ΔPbO2 and ΔPvO2 when the sensor had been inserted into healthy brain suggests that tissue PO2 monitoring may provide a useful tool to assess the effect of therapeutic interventions in brain injury.