Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: John D. Heiss x
Clear All Modify Search
Restricted access

Nicholas M. Wetjen, John D. Heiss and Edward H. Oldfield

Object

To better understand syrinx pathophysiology, the authors performed a prospective study in which they used findings from serial clinical and magnetic resonance (MR) imaging examinations performed before and after craniocervical decompression to establish the time course of syrinx narrowing.

Methods

Serial clinical examinations and cervical MR imaging were performed in 29 consecutive patients with Chiari malformation Type I (CM-I) and syringomyelia before surgery, 1 week, and 3–6 months after surgery, and then annually. Time to narrowing of the syrinx (> 50% decrease in maximal anteroposterior diameter) following surgery was calculated using the Kaplan–Meier method.

Results

All syringes decreased in diameter and length (number of segments) on MR images at 3–6 months, 1 year, and 2 years or later. The syrinx diameter decreased from 6.9 ± 2.1 mm (mean ± standard deviation) preoperatively to < 1.5 mm at last evaluation (p < 0.0001). The median time to syrinx narrowing was 3.6 months following CM-I decompression (95% confidence interval 3.0–6.5 months). After surgery 94% of patients had improved symptoms, but symptoms resolved incompletely in 68% of patients; 52 and 59% of patients had residual dysesthesias and sensory loss, respectively. Clinical improvement occurred before partial or complete disappearance of the syrinx on MR images. Patient age, duration of symptoms, sex, preoperative syrinx diameter, and length of syrinx were unrelated to time to syrinx narrowing.

Conclusions

Most patients improve after decompression for CM-I, but many have residual symptoms. Syringes may continue to diminish for months to years after surgical decompression. A collapsed syrinx (absence of distention of the spinal cord) indicates that the pathophysiology has been reversed by treatment regardless of the completeness of elimination of the cavity on MR images.

Restricted access

Russell R. Lonser, John D. Heiss and Edward H. Oldfield

Restricted access

Editorial

Chiari malformation Type I

Mark M. Souweidane

Full access

Prashant Chittiboina, John D. Heiss and Russell R. Lonser

An intraoperative MRI (iMRI)–compatible system has been developed for direct placement of convection-enhanced delivery (CED) cannulae using real-time imaging. To establish the precision and feasibility of this technology, the authors analyzed findings in patients who underwent direct iMRI CED cannula placement.

Three consecutive patients underwent iMRI-guided placement of CED infusion cannulae (6 cannulae) for treatment of diffuse intrinsic brainstem glioma (2 patients) or Parkinson's disease (1 patient). Convective infusion cannulae were guided to the target using the ClearPoint iMRI-based navigation platform (MRI Interventions, Inc.). Placement accuracy was analyzed.

Real-time iMRI during infusion cannula insertion allowed for monitoring of trajectory accuracy during placement. During cannula insertion, no reinsertions or changes due to errors in targeting were necessary. The mean radial error was 1.0 ± 0.5 mm (± SD). There was no correlation between the total length of the planned trajectory and the radial error (Pearson's coefficient: −0.40; p = 0.5). The mean anteroposterior and lateral errors were 0.9 ± 0.5 and 0.3 ± 0.2 mm, respectively. The mean in-plane distance error was 1.0 ± 0.4 mm. The mean tip error (scalar distance between the planned target and actual tip) was 1.9 ± 0.9 mm. There was no correlation between the length of the planned trajectory and any of the measured errors. No complications were associated with cannula placement.

Real-time iMRI-based targeting and monitoring of infusion cannula placement is a safe, effective, and accurate technique that should enable more selective perfusion of brain regions.

Restricted access

Russell R. Lonser, John D. Heiss and Edward H. Oldfield

✓ Preoperative reduction in tumor vascularity has been accomplished previously by selective catheterization of tumor vessels and delivery of occlusive materials. The results of percutaneous infusion of vertebral hemangiomas and other vascular lesions led the authors to speculate that rapid devascularization of tumors by direct injection of ethanol (ETOH) could be used to reduce bleeding and facilitate resection during surgery. Thus, the use of intratumoral injection of ETOH and its effects on tumor hemostasis and resectability were examined. Four patients received direct injection of ETOH into either a spinal epidural (two renal cell carcinomas and one rhabdomyosarcoma) or a large cerebellar neoplasm (hemangioblastoma). Intraoperative perfusion of the tumors with ETOH produced immediate blanching and devascularization and enhanced visualization and resection.

Incremental tumor devascularization is achieved by careful injection of small amounts of ETOH directly into the lesion, producing immediate and complete regional tumor devascularization. Use of this technique reduces intratumoral bleeding and enhances the ease and effectiveness of resection.

Restricted access

Matthew M. Peterson, Liviu Craciun and John D. Heiss

In 1974, a 9-year-old girl with syringomyelia and scoliosis was treated using the Echols procedure, a surgical technique that makes use of a metal stent to maintain drainage of fluid from the syrinx into the subarachnoid space. The patient presented to the authors' institution 34 years later with a history of progressive myelopathy and surgically treated deformities of the thoracic spine, lumbar spine, and right foot. Computer-assisted myelography indicated that the metal wire remained in place and that the syrinx had collapsed. Neurological examination and neurophysiological testing confirmed the presence of thoracic myelopathy, which may have been due to the wire tethering the thoracic spinal cord to the dorsal dura. This case is believed to be the only long-term report of the effects of the Echols procedure. The history of direct treatment of syringomyelia is reviewed and is contrasted with indirect treatment of syringomyelia, which relieves the condition by opening obstructed CSF pathways within the foramen magnum or spine.

Restricted access

John D. Heiss, Giancarlo Suffredini, Kamran D. Bakhtian, Malisa Sarntinoranont and Edward H. Oldfield

Object

Chiari malformation Type I (CM-I) is characterized by hindbrain deformity. We investigated the effects of craniocervical decompression surgery on the anatomical features of hindbrain deformity with a prospective MRI study of patients with CM-I.

Methods

A prospective longitudinal study was conducted in 48 patients with CM-I (39 with syringomyelia) treated with craniocervical decompression. Clinical examinations and cervical MRI were performed before surgery and 1 week, 3–6 months, and annually after surgery. Hindbrain deformity was defined by tonsillar ectopia, pointed cerebellar tonsils, and/or cervicomedullary protuberance. The length of the clivus, basiocciput (sphenooccipital synchondrosis to basion), supraocciput (internal occipital protuberance to opisthion), and anteroposterior (AP) width of CSF pathways at the foramen magnum were measured and compared with those from 18 healthy volunteers (control group).

Results

Before surgery, the patients' posterior fossa bones were short and their CSF pathways were narrow. All patients had tonsillar ectopia (mean [± SD] 12.3 ± 5.1 mm; normal 0.3 ± 1.0). The majority of patients had pointed tonsils and more than two-thirds exhibited a cervicomedullary protuberance. Clivus and basiocciput lengths were significantly shorter than the values obtained in the control group. However, the supraocciput length did not differ significantly from control measurements. The mean bulbopontine sulcus distance superior to the basion was 9.5 ± 2.6 mm (vs 13.6 ± 2.8 mm in controls; p < 0.0001). The AP widths of the CSF pathways at the level of the foramen magnum were significantly narrowed. After surgery, CSF pathways significantly expanded both ventrally and dorsally. By 3–6 months after surgery, pointed tonsils became round, cervicomedullary protuberance disappeared, and tonsillar ectopia diminished by 51% (to 6.0 ± 3.3 mm; p < 0.0001).

Conclusions

The cerebellar tonsils and brainstem assumed a normal appearance within 6 months after craniocervical decompression. These findings support the concept that the CM-I is not a congenital malformation of the neural elements but rather an acquired malformation that arises from pulsatile impaction of the cerebellar tonsils into the foramen magnum. Clinical trial registration no.: NCT00001327.

Restricted access

Rajiv R. Iyer, John A. Butman, Stuart Walbridge, Neville D. Gai, John D. Heiss and Russell R. Lonser

Object

Because convection-enhanced delivery relies on bulk flow of fluid in the interstitial spaces, MR imaging techniques that detect extracellular fluid and fluid movement may be useful for tracking convective drug distribution. To determine the tracking accuracy of T2-weighted and diffusion-weighted MR imaging sequences, the authors followed convective distribution of radiolabeled compounds using these imaging sequences in nonhuman primates.

Methods

Three nonhuman primates underwent thalamic convective infusions (5 infusions) with 14C-sucrose (MW 342 D) or 14C-dextran (MW 70,000 D) during serial MR imaging (T2- and diffusion-weighted imaging). Imaging, histological, and autoradiographic findings were analyzed.

Results

Real-time T2- and diffusion-weighted imaging clearly demonstrated the region of infusion, and serial images revealed progressive filling of the bilateral thalami during infusion. Imaging analysis for T2- and diffusion-weighted sequences revealed that the tissue volume of distribution (Vd) increased linearly with volume of infusion (Vi; R2 = 0.94, R2 = 0.91). Magnetic resonance imaging analysis demonstrated that the mean ± SD Vd/Vi ratios for T2-weighted (3.6 ± 0.5) and diffusion-weighted (3.3 ± 0.4) imaging were similar (p = 0.5). While 14C-sucrose and 14C-dextran were homogeneously distributed over the infused region, autoradiographic analysis revealed that T2-weighted and diffusion-weighted imaging significantly underestimated the Vd of both 14C-sucrose (mean differences 51.3% and 52.3%, respectively; p = 0.02) and 14C-dextran (mean differences 49.3% and 59.6%; respectively, p = 0.001).

Conclusions

Real-time T2- and diffusion-weighted MR imaging significantly underestimate tissue Vd during convection-enhanced delivery over a wide range of molecular sizes. Application of these imaging modalities may lead to inaccurate estimation of convective drug distribution.