Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Johannes Herta x
  • Refine by Access: all x
Clear All Modify Search
Open access

Use of a 3D exoscope in microvascular decompression of the trigeminal nerve root

Johannes Herta, Karl Rössler, and Christian Dorfer

For microvascular decompression surgery, adequate visualization of the trigeminal nerve root is essential. Several visualization techniques with operating microscopes, endoscopes, a combination of both, and exoscopes have been described. In this video, the authors use a 4K 3D exoscope (ORBEYE) as it offers superb optical image quality with a high degree of magnification and illumination in the cerebellopontine angle. Other advantages are surgeon ergonomics, a very good depth of field for the entire operating team, and potentially evolving visualization technologies like narrow-band imaging—essential points for microvascular decompression surgery where the aim is to create the best possible visibility in a narrow corridor.

The video can be found here: https://stream.cadmore.media/r10.3171/2023.10.FOCVID23149

Free access

Optimizing maximum resection of glioblastoma: Raman spectroscopy versus 5-aminolevulinic acid

Johannes Herta, Anna Cho, Thomas Roetzer-Pejrimovsky, Romana Höftberger, Wolfgang Marik, Gernot Kronreif, Tanja Peilnsteiner, Karl Rössler, and Stefan Wolfsberger

OBJECTIVE

The objective of this study was to assess and compare the potential of 5-aminolevulinic acid (5-ALA) and Raman spectroscopy (RS) in detecting tumor-infiltrated brain in patients with glioblastoma (GBM).

METHODS

Between July 2020 and October 2021, the authors conducted a prospective clinical trial with 15 patients who underwent neurosurgical treatment of newly diagnosed and histologically verified GBM. A solid contrast-enhancing tumor core and peritumoral tissue were investigated intraoperatively for cancer cells by using 5-ALA and RS to achieve pathology-tailored maximum resection. In each case, a minimum of 10 biopsies were sampled from navigation-guided areas. Two neuropathologists examined the biopsies for the presence of neoplastic cells. The detection performance of 5-ALA and RS alone and in combination was assessed. Pre- and postoperative MRI, Karnofsky Performance Status (KPS), and National Institutes of Health Stroke Scale (NIHSS) scores were compared, and median progression-free survival (PFS) was evaluated.

RESULTS

A total of 185 biopsy samples were harvested from the contrast-enhancing tumor core (n = 19) and peritumoral tissue (n = 166). In the tumor core, 5-ALA and RS each showed a sensitivity of 100%. In the peritumoral tissue, 5-ALA was less sensitive than RS in detecting cancer (46% vs 69%) but showed higher specificity (81% vs 57%). When the two methods were combined, the accuracy of tumor detection was increased by about 10%.

Pathology-tailored resection led to a 52% increase in resection volume comparing the volume of preoperative contrast enhancement with the postoperative resection cavity on MRI (p = 0.0123). Eloquent brain involvement prevented gross-total resection in 4 patients. Four weeks after surgery, mean KPS (p = 0.7637) and NIHSS scores (p = 0.3146) were not significantly different from preoperative values. Of the 13 patients who had received postoperative chemoradiotherapy, 4 did not show any progression after a median follow-up of 14 months. The remaining 9 patients had a median PFS of 8 months.

CONCLUSIONS

According to the study data, RS is capable of detecting tumor-infiltrated brain with higher sensitivity but lower specificity than the current standard of 5-ALA. With further technological and workflow advancements, RS in combination with protoporphyrin IX fluorescence may contribute to pathology-tailored glioma resection in the future.

Free access

5-ALA fluorescence for intraoperative visualization of spinal ependymal tumors and identification of unexpected residual tumor tissue: experience in 31 patients

Matthias Millesi, Barbara Kiesel, Vanessa Mazanec, Lisa I. Wadiura, Adelheid Wöhrer, Johannes Herta, Stefan Wolfsberger, Klaus Novak, Julia Furtner, Karl Rössler, Engelbert Knosp, and Georg Widhalm

OBJECTIVE

Gross-total resection (GTR) is the treatment of choice in the majority of patients suffering from spinal ependymal tumors. In such tumors, the extent of resection (EOR) is considered the key factor for tumor recurrence and thus patient prognosis. However, incomplete resection is not uncommon and leads to increased risk of tumor recurrence. One important cause of incomplete resection is insufficient intraoperative visualization of tumor tissue as well as residual tumor tissue. Therefore, the authors investigated the value of 5-aminolevulinic acid (5-ALA)–induced fluorescence in a series of spinal ependymal tumors for improved tumor visualization.

METHODS

Adult patients who underwent preoperative 5-ALA administration and surgery for a spinal ependymal tumor were included in this study. For each tumor, a conventional white-light microsurgical resection was performed. Additionally, the fluorescence status (strong, vague, or no fluorescence) and fluorescence homogeneity (homogenous or inhomogeneous) of the spinal ependymal tumors were evaluated during surgery using a modified neurosurgical microscope. In intramedullary tumor cases with assumed GTR, the resection cavity was investigated for potential residual fluorescing foci under white-light microscopy. In cases with residual fluorescing foci, these areas were safely resected and the corresponding samples were histopathologically screened for the presence of tumor tissue.

RESULTS

In total, 31 spinal ependymal tumors, including 27 intramedullary tumors and 4 intradural extramedullary tumors, were included in this study. Visible fluorescence was observed in the majority of spinal ependymal tumors (n = 25, 81%). Of those, strong fluorescence was noted in 23 of these cases (92%), whereas vague fluorescence was present in 2 cases (8%). In contrast, no fluorescence was observed in the remaining 6 tumors (19%). Most ependymal tumors demonstrated an inhomogeneous fluorescence effect (17 of 25 cases, 68%). After assumed GTR in intramedullary tumors (n = 15), unexpected residual fluorescing foci within the resection cavity could be detected in 5 tumors (33%). These residual fluorescing foci histopathologically corresponded to residual tumor tissue in all cases.

CONCLUSIONS

This study indicates that 5-ALA fluorescence makes it possible to visualize the majority of spinal ependymal tumors during surgery. Unexpected residual tumor tissue could be detected with the assistance of 5-ALA fluorescence in approximately one-third of analyzed intramedullary tumors. Thus, 5-ALA fluorescence might be useful to increase the EOR, particularly in intramedullary ependymal tumors, in order to reduce the risk of tumor recurrence.

Free access

Awake brain surgery for language mapping in pediatric patients: a single-center experience

Johannes Herta, Fabian Winter, Ekaterina Pataraia, Martha Feucht, Thomas Czech, Barbara Porsche, Ulrike Leiss, Irene Slavc, Andreas Peyrl, Gregor Kasprian, Karl Rössler, and Christian Dorfer

OBJECTIVE

The goal of this study was to evaluate the feasibility, benefit, and safety of awake brain surgery (ABS) and intraoperative language mapping in children and adolescents with structural epilepsies. Whereas ABS is an established method to monitor language function in adults intraoperatively, reports of ABS in children are scarce.

METHODS

A retrospective chart review of pediatric patients ≤ 18 years of age who underwent ABS and cortical language mapping for supratentorial tumors and nontumoral epileptogenic lesions between 2008 and 2019 was conducted. The authors evaluated the global intellectual and specific language performance by using detailed neuropsychological testing, the patient’s intraoperative compliance, results of intraoperative language mapping assisted by electrocorticography (ECoG), and postsurgical language development and seizure outcomes. Descriptive statistics were used for this study, with a statistical significance of p < 0.05.

RESULTS

Eleven children (7 boys) with a median age of 13 years (range 10–18 years) underwent ABS for a lesion in close vicinity to cortical language areas as defined by structural and functional MRI (left hemisphere in 9 children, right hemisphere in 2). Patients were neurologically intact but experiencing seizures; these were refractory to therapy in 9 patients. Compliance during the awake phase was high in 10 patients and low in 1 patient. Cortical mapping identified eloquent language areas in 6/10 (60%) patients and was concordant in 3/8 (37.5%), discordant in 3/8 (37.5%), and unclear in 2/8 (25%) patients compared to preoperative functional MRI. Stimulation-induced seizures occurred in 2 patients and could be interrupted easily. ECoG revealed that afterdischarge potentials (ADP) were involved in 5/9 (56%) patients with speech disturbances during stimulation. None of these patients harbored postoperative language dysfunction. Gross-total resection was achieved in 10/11 (91%) patients, and all were seizure free after a median follow-up of 4.3 years. Neuropsychological testing using the Wechsler Intelligence Scale for Children and the verbal learning and memory test showed an overall nonsignificant trend toward an immediate postoperative deterioration followed by an improvement to above preoperative levels after 1 year.

CONCLUSIONS

ABS is a valuable technique in selected pediatric patients with lesions in language areas. An interdisciplinary approach, careful patient selection, extensive preoperative training of patients, and interpretation of intraoperative ADP are pivotal to a successful surgery.