Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Jing Zhou x
Clear All Modify Search
Restricted access

Hanjin Cui, Ali Yang, Huajun Zhou, Yang Wang, Jiekun Luo, Jun Zhou, Tao Liu, Pengfei Li, Jing Zhou, En Hu, Zehui He, Wang Hu and Tao Tang

OBJECTIVE

Thrombin is a unique factor that triggers post-intracerebral hemorrhage (ICH) angiogenesis by increasing hypoxia-inducible factor–1α (HIF-1α) at the protein level. However, HIF-1α mRNA remains unchanged. MicroRNAs (miRNAs) mediate posttranscriptional regulation by suppressing protein translation from mRNAs. This study aimed to determine if miRNAs might be involved in thrombin-induced angiogenesis after ICH by targeting HIF-1α or its upstream prolyl hydroxylase domains (PHDs).

METHODS

The study was divided into two parts. In part 1, rats received an injection of thrombin into the right globus pallidus. An miRNA array combined with miRNA target prediction, luciferase activity assay, and miRNA mimic/inhibitor transfection were used to identify candidate miRNAs and target genes. Part 2 included experiments 1 and 2. In experiment 1, rats were randomly divided into the sham group, ICH group, and ICH+hirudin–treated (thrombin inhibitor) group. In experiment 2, the rats were randomly divided into the sham group, ICH group, ICH+antagomir group, ICH+antagomir-control group, and ICH+vehicle group. Western blotting and quantitative real-time polymerase chain reaction were used to determine the expression of protein and miRNA, respectively. The coexpression of miR-24–1-5p (abbreviated to miR-24) and von Willebrand factor was detected by in situ hybridization and immunohistochemical analysis. The angiogenesis was evaluated by double-labeling immunofluorescence. Neurological function was evaluated by body weight, modified Neurological Severity Scores, and corner turn and foot-fault tests.

RESULTS

In part 1, it was shown that miR-24, which is predicted to target PHD1, was upregulated (fold-change of 1.83) after thrombin infusion, and that the miR-24 mimic transfection decreased luciferase activity and downregulated PHD1 expression (p < 0.05). miR-24 inhibitor transfection increased PHD1 expression (p < 0.05). In part 2, it was shown that miR-24 was expressed in endothelial cells. The HIF-1α protein level and proliferating cell nuclear antigen–positive (PCNA+) nuclei in vessels were increased, while the PHD1 protein level was decreased after ICH, and these effects were reversed by hirudin (p < 0.05). The antagomiR-24–treated rats exhibited a markedly lower body weight and significantly poorer recovery from neurological deficit compared with those in ICH groups (p < 0.05). AntagomiR-24 intervention also led to lower miR-24 expression, a higher PHD1 protein level, and fewer PCNA+ nuclei in vessels compared with those in ICH groups (p < 0.05).

CONCLUSIONS

The present study suggests that thrombin reduces HIF-1α degradation and initiates angiogenesis by increasing miR-24, which targets PHD1 after ICH.

Restricted access

Xin-Yi Gao, Qiao Li, Jing-Run Li, Qian Zhou, Jian-Xun Qu and Zhen-Wei Yao

OBJECTIVE

The authors conducted a study to noninvasively and nonradioactively reveal moyamoya disease (MMD) intracerebral perfusion and perfusion territory supplied by the unilateral internal carotid artery (ICA) and external carotid artery (ECA) and bilateral vertebral arteries (VAs) before surgery and to further identify risk factors for preoperative hemorrhage in adult MMD.

METHODS

Forty-three consecutive adult patients with bilateral MMD underwent unenhanced T1-weighted MRI, territorial arterial spin labeling (t-ASL), and unenhanced 3D time-of-flight MRA (3D-TOF-MRA). Clinical factors, including age, sex, hypertension, diabetes mellitus, hyperlipidemia, current smoking status, and history of taking aspirin, were gathered and stratified. Univariate logistic regression analyses were used to examine the relationship between various risk factors and the occurrence of preoperative hemorrhage. Stepwise multivariate logistic regression analyses were used to determine independent risk factors of preoperative hemorrhage in MMD.

RESULTS

Among the 86 MMD hemispheres, t-ASL revealed 137 perfusion territory shifts in 79 hemispheres. Five distinct categories of perfusion territory shifts were observed on t-ASL maps. The subtypes of perfusion territory shift on t-ASL maps were further subdivided into 2 different categories, group A and group B, in combination with findings on 3D-TOF-MRA. A perfusion territory shift attributable solely to the secondary collaterals was a potential independent risk factor for preoperative hemorrhage (p = 0.026; 95% CI 1.201–18.615; OR 4.729). After eliminating the influence of the secondary collaterals, the primary collaterals had no significant effect on the risk of preoperative hemorrhage (p = 0.182).

CONCLUSIONS

t-ASL could reveal comprehensive MMD cerebral blood perfusion and the vivid perfusion territory shifts fed by the unilateral ICA and ECA and bilateral VAs in a noninvasive, straightforward, nonradioactive, and nonenhanced manner. 3D-TOF-MRA could subdivide t-ASL perfusion territory shifts according to their shunt arteries. A perfusion territory shift attributable to the secondary collaterals is a potential independent risk factor for preoperative hemorrhage in MMD patients. A perfusion territory shift fed by the primary collaterals may not have a strong effect on preoperative hemorrhage in MMD patients. These findings make the combined modalities of t-ASL and 3D-TOF-MRA a feasible tool for MMD disease assessment, management, and surgical strategy planning.

Full access

Wei Xu, Yu Wang, Jing Wang, Xinghai Yang, Weibo Liu, Wang Zhou, Tielong Liu and Jianru Xiao

OBJECTIVE

The objective of this study was to investigate the effect of long-term bisphosphonate treatment on reducing local recurrence of sacral giant cell tumors (GCTs) after nerve-sparing surgery.

METHODS

Thirty-five consecutive patients with sacral GCTs who received treatment in Shanghai Changzheng Hospital between January 2000 and December 2010 were included in this study. Between January 2007 and December 2010, 19 patients received bisphosphonates following nerve-sparing surgery. Before January 2007, 16 patients received nerve-sparing surgery alone, and these cases were included as the control group. The difference in clinical data between the groups was compared by Student's t-test and 2-tailed chi-square or Fisher's exact test. The postoperative recurrence-free survival (RFS) and overall survival (OS) rates were estimated by the Kaplan-Meier method and compared between the groups by log-rank test. A p value < 0.05 was considered statistically significant.

RESULTS

All of the patients had relatively good nerve function. The clinical data were homogeneous between the groups. The local recurrence rate was 10.53% (2 of 19) in the bisphosphonate treatment group and 43.75% (7 of 16) in the control group. The log-rank test showed that the 3-year RFS and 3-year OS in the bisphosphonate treatment group were significantly higher than those in the control group (RFS 89.5% vs 56.3%, p = 0.04; OS 100% vs 81.3%, p = 0.05).

CONCLUSIONS

The long-term use of bisphosphonates after nerve-sparing surgery is a viable option for the treatment of sacral GCTs. This approach could reduce local recurrences while preserving nerve function.

Full access

Jian-Hua Zhong, Hua-Jun Zhou, Tao Tang, Han-Jin Cui, A-Li Yang, Qi-Mei Zhang, Jing-Hua Zhou, Qiang Zhang, Xun Gong, Zhao-Hui Zhang and Zhi-Gang Mei

OBJECTIVE

Reactive astrogliosis, a key feature that is characterized by glial proliferation, has been observed in rat brains after intracerebral hemorrhage (ICH). However, the mechanisms that control reactive astrogliosis formation remain unknown. Notch-1 signaling plays a critical role in modulating reactive astrogliosis. The purpose of this paper was to establish whether Notch-1 signaling is involved in reactive astrogliosis after ICH.

METHODS

ICH was induced in adult male Sprague-Dawley rats via stereotactic injection of autologous blood into the right globus pallidus. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) was injected into the lateral ventricle to block Notch-1 signaling. The rats’ brains were perfused to identify proliferating cell nuclear antigen (PCNA)-positive/GFAP-positive nuclei. The expression of GFAP, Notch-1, and the activated form of Notch-1 (Notch intracellular domain [NICD]) and its ligand Jagged-1 was assessed using immunohistochemical and Western blot analyses, respectively.

RESULTS

Notch-1 signaling was upregulated and activated after ICH as confirmed by an increase in the expression of Notch-1 and NICD and its ligand Jagged-1. Remarkably, blockade of Notch-1 signaling with the specific inhibitor DAPT suppressed astrocytic proliferation and GFAP levels caused by ICH. In addition, DAPT improved neurological outcome after ICH.

CONCLUSIONS

Notch-1 signaling is a critical regulator of ICH-induced reactive astrogliosis, and its blockage may be a potential therapeutic strategy for hemorrhagic injury.

Restricted access

Ping Zhou, Hongying Zhang, Hong Bu, Xiangli Yin, Rui Zhang, Jing Fu, Zhang Zhang, Huijiao Chen, Bing Wei and Xi Liu

Glomangiomatosis is benign but may manifest as diffusely, locally infiltrating lesions and recur after simple excision. However, conservative treatment should be advocated. The authors report a recent case in which the lesion occurred in the paravertebral area. The patient was a 39-year-old Chinese man who complained of chronic lumbago for 20 years. The clinicopathological features, in conjunction with the immunostaining pattern and ultrastructural features, confirmed the diagnosis. Glomangiomatosis is an extremely rare soft-tissue lesion. To the best of authors' knowledge, only 10 cases have been reported in the English-language literature worldwide, and the current case is the first to represent a lesion arising from the paravertebral area. The authors review the English-language literature in glomangiomatosis.

Full access

Junxiang Wen, Yingchao Han, Song Guo, Mingjie Yang, Lijun Li, Guixin Sun, Jun Wang, Fangqiong Hu, Jing Liang, Li Wei, Qi Zhou, Weibin Zhang and Jun Tan

The authors studied restoration of respiratory function in rabbits, using the recurrent laryngeal nerve to restore function after the phrenic nerve had been severed. The results of this animal study are encouraging and suggest that a similar technique could possibly be used to help patients with severe cervical spinal cord injuries.

Full access

Hua Zhong, Zhihong Zhou, Guo-Hua Lv, Jing Li and Ming-Xiang Zou

Full access

Qiang Tan, Qianwei Chen, Yin Niu, Zhou Feng, Lin Li, Yihao Tao, Jun Tang, Liming Yang, Jing Guo, Hua Feng, Gang Zhu and Zhi Chen

OBJECTIVE

Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fibrinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study.

METHODS

Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH.

RESULTS

In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH. In addition, uPA therapy more effectively upregulated BBB tight junction protein expression, which was partly attributed to the different effects of uPA and tPA on the regulation of MMPs and its related mRNA expression following ICH.

CONCLUSIONS

This study provided evidence supporting the use of uPA for fibrinolytic therapy after ICH. Large animal experiments and clinical trials are required to further explore the efficacy and safety of uPA in ICH fibrinolysis.

Full access

Guang Yang, Zhendong Liu, Lu Wang, Xin Chen, Xiaoxiong Wang, Qi Dong, Daming Zhang, Zhao Yang, Qi Zhou, Jingxian Sun, Linmeng Xue, Xinzhuang Wang, Ming Gao, Lili Li, Ran Yi, Gareev Ilgiz, Jing Ai and Shiguang Zhao

OBJECTIVE

It has been reported that microRNA-195 (miR-195) protects against chronic brain injury induced by chronic brain hypoperfusion. However, neither the expression profile of miR-195 nor its potential role during acute ischemic stroke has been investigated. In this study, the authors’ aim was to verify the mechanism of miR-195 in acute ischemic stroke.

METHODS

The plasma levels of miR-195 expression were assessed using real-time PCR in 96 patients with acute ischemic stroke, and the correlation with the National Institutes of Health Stroke Scale score was evaluated. In addition, cerebral infarct volume, neurological score, and levels of miR-195 and CX3CL1/CX3CR1 mRNA and protein expression were assessed in mice subjected to middle cerebral artery occlusion (MCAO) with or without intra-cerebroventricular infusion of lentiviral vector. The inflammatory cytokines tumor necrosis factor–α (TNFα), interleukin (IL)–1β, and IL-6 of mouse brains after MCAO and BV2 cells treated with oxygen-glucose deprivation were measured using enzyme-linked immunosorbent assay, and apoptotic proteins were examined by Western blotting. Direct targeting of CX3CL1/CX3CR1 by miR-195 was determined by immunoblotting and dual luciferase assay.

RESULTS

In ischemic stroke patients, miR-195 was significantly downregulated and expression levels of miR-195 in these patients negatively correlated with the National Institutes of Health Stroke Scale score. In mice after MCAO, miR-195 overexpression decreased infarct volume, alleviated neurological deficits, and most importantly, suppressed an inflammatory response. Meanwhile, miR-195 suppressed the expression of the inflammatory cytokines TNFα, IL-1β, and IL-6 in vitro and in vivo. The authors further discovered that both CX3CL1 and CX3CR1 are direct targets of miR-195, but miR-195 exerts neuroprotective roles mainly through inhibiting CX3CR1-mediated neuroinflammation and subsequent neuronal cell apoptosis.

CONCLUSIONS

Taken together, these findings suggest that miR-195 promotes neuronal cell survival against chronic cerebral ischemic damage by inhibiting CX3CR1-mediated neuroinflammation. This indicates that miR-195 may represent a novel target that regulates neuroinflammation and brain injury, thus offering a new treatment strategy for cerebral ischemic disorders.