Search Results

You are looking at 1 - 10 of 46 items for

  • Author or Editor: Jing Li x
Clear All Modify Search
Restricted access

Stephen T. Magill, Seunggu J. Han, Jing Li and Mitchel S. Berger

OBJECTIVE

Brain tumors involving the primary motor cortex are often deemed unresectable due to the potential neurological consequences that result from injury to this region. Nevertheless, we have challenged this dogma for many years and used asleep, as well as awake, intraoperative stimulation mapping to maximize extent of resection. It remains unclear whether these tumors can be resected with acceptable morbidity, whether performing the surgery with the patient awake or asleep impacts extent of resection, and how stimulation mapping influences outcomes.

METHODS

A retrospective chart review was performed on the senior author’s cohort to identify patients treated between 1998 and 2016 who underwent resection of tumors that were located within the primary motor cortex. Clinical notes, operative reports, and radiographic images were reviewed to identify intraoperative stimulation mapping findings and functional outcomes following tumor resection. Extent of resection was quantified volumetrically. Characteristics of patients were analyzed to identify factors associated with postoperative motor deficits.

RESULTS

Forty-nine patients underwent 53 resections of tumors located primarily within the motor cortex. Stimulation mapping was performed in all cases. Positive cortical sites for motor response were identified in 91% of cases, and subcortical sites in 74%. Awake craniotomy was performed in 65% of cases, while 35% were done under general anesthesia. The mean extent of resection was 91%. There was no statistically significant difference in extent of resection in cases done awake compared with those done under general anesthesia. New or worsened postoperative motor deficits occurred in 32 patients (60%), and 20 patients (38%) had a permanent deficit. Of the permanent deficits, 14 were mild, 4 were moderate, and 2 were severe (3.8% of cases). Decreased intraoperative motor response and diffusion restriction on postoperative MRI were associated with permanent deficit. Awake motor mapping surgery was associated with increased diffusion signal on postoperative MRI.

CONCLUSIONS

Resection of tumors from the primary motor cortex is associated with an increased risk of motor deficit, but most of these deficits are transient or mild and have little functional impact. Excellent extent of resection can be achieved with intraoperative stimulation mapping, suggesting that these tumors are indeed amenable to resection and should not be labeled unresectable. Injury to small perforating or en passage blood vessels was the most common cause of infarction that led to moderate or severe deficits. Awake motor mapping was not superior to mapping done under general anesthesia with regard to long-term functional outcome.

Full access

Ming-Xiang Zou, Jing Li, Xiao-Bin Wang and Guo-Hua Lv

Full access

Shawn L. Hervey-Jumper, Jing Li, Joseph A. Osorio, Darryl Lau, Annette M. Molinaro, Arnau Benet and Mitchel S. Berger

OBJECT

Though challenging, maximal safe resection of insular gliomas enhances overall and progression-free survival and deters malignant transformation. Previously published reports have shown that surgery can be performed with low morbidity. The authors previously described a Berger-Sanai zone classification system for insular gliomas. Using a subsequent dataset, they undertook this study to validate this zone classification system for predictability of extent of resection (EOR) in patients with insular gliomas.

METHODS

The study population included adults who had undergone resection of WHO Grade II, III, or IV insular gliomas. In accordance with our prior published report, tumor location was classified according to the Berger-Sanai quadrant-style classification system into Zones I through IV. Interobserver variability was analyzed using a cohort of newly diagnosed insular gliomas and independent classification scores given by 3 neurosurgeons at various career stages. Glioma volumes were analyzed using FLAIR and T1-weighted contrast-enhanced MR images.

RESULTS

One hundred twenty-nine procedures involving 114 consecutive patients were identified. The study population from the authors’ previously published experience included 115 procedures involving 104 patients. Thus, the total experience included 244 procedures involving 218 patients with insular gliomas treated at the authors’ institution. The most common presenting symptoms were seizure (68.2%) and asymptomatic recurrence (17.8%). WHO Grade II glioma histology was the most common (54.3%), followed by Grades III (34.1%) and IV (11.6%). The median tumor volume was 48.5 cm3. The majority of insular gliomas were located in the anterior portion of the insula with 31.0% in Zone I, 10.9% in Zone IV, and 16.3% in Zones I+IV. The Berger-Sanai zone classification system was highly reliable, with a kappa coefficient of 0.857. The median EOR for all zones was 85%. Comparison of EOR between the current and prior series showed no change and Zone I gliomas continue to have the highest median EOR. Short- and long-term neurological complications remain low, and zone classification correlated with short-term complications, which were highest in Zone I and in Giant insular gliomas.

CONCLUSIONS

The previously proposed Berger-Sanai classification system is highly reliable and predictive of insular glioma EOR and morbidity.

Restricted access

Shikun Zhan, Fafa Sun, Yixin Pan, Wei Liu, Peng Huang, Chunyan Cao, Jing Zhang, Dianyou Li and Bomin Sun

OBJECTIVE

Subthalamic nucleus deep brain stimulation has been shown to be effective in reducing symptoms of primary Meige syndrome. However, assessments of its efficacy and safety have been limited to several case reports and small studies.

METHODS

The authors performed a retrospective study to assess the efficacy and safety of bilateral subthalamic nucleus stimulation in 15 patients with primary Meige syndrome who responded poorly to medical treatments or botulinum toxin injections. Using the movement and disability subscores of the Burke-Fahn-Marsden Dystonia Rating Scale, the authors evaluated the severity of patients’ dystonia and related before surgery and at final follow-up during neurostimulation. The movement scale was assessed based on preoperative and postoperative video documentation by an independent rater who was unaware of each patient’s neurostimulation status. Quality of life was assessed with the Medical Outcomes Study 36-Item Short-Form General Health Survey.

RESULTS

The dystonia movement subscores in 14 consecutive patients improved from 19.3 ± 7.6 (mean ± standard deviation) before surgery to 5.5 ± 4.5 at final follow-up (28.5 ± 16.5 months), with a mean improvement of 74% (p < 0.05). The disability subscore improved from 15.6 ± 4.9 before surgery to 6.1 ± 3.5 at final follow-up (p < 0.05). In addition, the postoperative SF-36 scores increased markedly over those at baseline. The authors also found that bilateral stimulation of the subthalamic nucleus immediately improved patient symptoms after stimulation and required lower stimulation parameters than those needed for pallidal deep brain stimulation for primary Meige syndrome. Four adverse events occurred in 3 patients; all of these events resolved without permanent sequelae.

CONCLUSIONS

These findings provide further evidence to support the long-term efficacy and safety of subthalamic nucleus stimulation as an alternative treatment for patients with medically intractable Meige syndrome.

Restricted access

Eun Young Han, He Wang, Dershan Luo, Jing Li and Xin Wang

OBJECTIVE

For patients with multiple large brain metastases with at least 1 target volume larger than 10 cm3, multifractionated stereotactic radiosurgery (MF-SRS) has commonly been delivered with a linear accelerator (LINAC). Recent advances of Gamma Knife (GK) units with kilovolt cone-beam CT and CyberKnife (CK) units with multileaf collimators also make them attractive choices. The purpose of this study was to compare the dosimetry of MF-SRS plans deliverable on GK, CK, and LINAC and to discuss related clinical issues.

METHODS

Ten patients with 2 or more large brain metastases who had been treated with MF-SRS on LINAC were identified. The median planning target volume was 18.31 cm3 (mean 21.31 cm3, range 3.42–49.97 cm3), and the median prescribed dose was 27.0 Gy (mean 26.7 Gy, range 21–30 Gy), administered in 3 to 5 fractions. Clinical LINAC treatment plans were generated using inverse planning with intensity modulation on a Pinnacle treatment planning system (version 9.10) for the Varian TrueBeam STx system. GK and CK planning were retrospectively performed using Leksell GammaPlan version 10.1 and Accuray Precision version 1.1.0.0 for the CK M6 system. Tumor coverage, Paddick conformity index (CI), gradient index (GI), and normal brain tissue receiving 4, 12, and 20 Gy were used to compare plan quality. Net beam-on time and approximate planning time were also collected for all cases.

RESULTS

Plans from all 3 modalities satisfied clinical requirements in target coverage and normal tissue sparing. The mean CI was comparable (0.79, 0.78, and 0.76) for the GK, CK, and LINAC plans. The mean GI was 3.1 for both the GK and the CK plans, whereas the mean GI of the LINAC plans was 4.1. The lower GI of the GK and CK plans would have resulted in significantly lower normal brain volumes receiving a medium or high dose. On average, GK and CK plans spared the normal brain volume receiving at least 12 Gy and 20 Gy by approximately 20% in comparison with the LINAC plans. However, the mean beam-on time of GK (∼ 64 minutes assuming a dose rate of 2.5 Gy/minute) plans was significantly longer than that of CK (∼ 31 minutes) or LINAC (∼ 4 minutes) plans.

CONCLUSIONS

All 3 modalities are capable of treating multiple large brain lesions with MF-SRS. GK has the most flexible workflow and excellent dosimetry, but could be limited by the treatment time. CK has dosimetry comparable to that of GK with a consistent treatment time of approximately 30 minutes. LINAC has a much shorter treatment time, but residual rotational error could be a concern.

Restricted access

Shiwei Wang, Diya Su, Jing Li, Dezhi Li, Hong Wan, Michael Schumacher and Song Liu

OBJECTIVE

In this study, the authors used a surgical model of end-to-side neurorrhaphy between a nerve graft and a donor tibial nerve in adult rats to investigate the optimal conditions for axonal regeneration induced by the donor nerve. They also assessed the importance of a more favorable pathway using a predegenerated nerve graft to attract regenerating axons to regrow into the graft and then directing and improving their growth toward the target in comparison with results obtained with a fresh nerve graft.

METHODS

End-to-side neurorrhaphy was performed between a nerve graft and a donor tibial nerve. The nerve graft was obtained from the left tibial nerve, which was either freshly removed or predegenerated 1 week prior to neurorrhaphy. The donor right tibial nerve was injured by epineurium removal alone, injured by epineurium removal with cross section of 20% or 50% of the total axons at the coaptation site, or left intact. The animals were followed postoperatively for a 6-week period, and outcomes were evaluated by optical microscopy and retrograde labeling to detect the regenerated primary sensory neurons located in the lumbar dorsal root ganglia and spinal motor neurons located in the lumbar spinal ventral horn.

RESULTS

At the end of the follow-up period, no regenerating axons were observed in the nerve grafts when the donor nerve was left intact, and very few axons were detected when the donor nerve was injured by epineurium removal alone. However, numerous regenerating axons appeared in the grafts when the donor nerve was axotomized, and the greatest number was achieved with a 50% cross section axotomized nerve. In the rats with a 50% cross section of the donor nerve, better nerve-like morphology of the grafts was observed, without connective adhesions. When a predegenerated nerve graft was used, more regenerating axons were attracted and elongated with a more regular shape and improved myelination.

CONCLUSIONS

Axonal regrowth into a nerve graft depends on axotomy of the donor nerve after end-to-side neurorrhaphy. More efficient attraction and an improved structure of the regenerating axons were achieved when a predegenerated nerve graft was used. Furthermore, a nerve graft may require a certain number of regenerating axons to maintain a nerve-like morphology.

Full access

Hui-Ren Tao, Tian-Li Yang, Michael S. Chang, Huan Li, Da-Wei Zhang, Hong-Bin Fan, Chao Shen and Zhuo-Jing Luo

Tethered cord is a common finding in congenital scoliosis. The most frequently advocated approach for this condition is to perform prophylactic detethering of the cord before scoliosis corrective surgery. The authors report on a 14-year-old patient with congenital thoracic kyphoscoliosis associated with a tethered cord, who developed progressive paraparesis and was successfully treated by posterior spine shortening osteotomy alone without prophylactic untethering. The patient had a 103° scoliotic curve together with a 93° kyphotic curve with an apical vertebra of T-7. Furthermore, he developed a significant progression of neurological deficits, including weakness of both legs and urinary and bowel incontinence. Preoperative MRI revealed that the spinal cord was entrapped by the apical vertebra and the low-placed conus medullaris was at approximately L-5. A posterior vertebral column resection of T-7 was performed for the purpose of simultaneously correcting the kyphoscoliosis and releasing tension on the tethered cord without a true detethering surgery. The patient's spinal cord function recovered completely from Frankel D to Frankel E by 6 months after the procedure. Evaluation at 31 months after surgery showed maintenance of good curve correction and normal neurological function.

Restricted access

Xian-Li Lv, You-Xiang Li, Ai-Hua Liu, Ming Lv, Peng Jiang, Jing-Bo Zhang and Zhong-Xue Wu

✓The authors present the case of a patient with a direct carotid artery–cavernous sinus fistula caused by head trauma in whom a self-expanding covered stent was successfully used to obliterate the fistula. However, at the 9-month follow-up an angiogram revealed a complex caroticocavernous fistula that was completely obliterated with Onyx 18 transarterially.

Restricted access

Yu Shuang Tian, Di Zhong, Qing Qing Liu, Xiu Li Zhao, Hong Xue Sun, Jing Jin, Hai Ning Wang and Guo Zhong Li

OBJECTIVE

Ischemic stroke remains a significant cause of death and disability in industrialized nations. Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) of the JAK2/STAT3 pathway play important roles in the downstream signal pathway regulation of ischemic stroke–related inflammatory neuronal damage. Recently, microRNAs (miRNAs) have emerged as major regulators in cerebral ischemic injury; therefore, the authors aimed to investigate the underlying molecular mechanism between miRNAs and ischemic stroke, which may provide potential therapeutic targets for ischemic stroke.

METHODS

The JAK2- and JAK3-related miRNA (miR-135, miR-216a, and miR-433) expression levels were detected by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis in both oxygen-glucose deprivation (OGD)–treated primary cultured neuronal cells and mouse brain with middle cerebral artery occlusion (MCAO)–induced ischemic stroke. The miR-135, miR-216a, and miR-433 were determined by bioinformatics analysis that may target JAK2, and miR-216a was further confirmed by 3′ untranslated region (3′UTR) dual-luciferase assay. The study further detected cell apoptosis, the level of lactate dehydrogenase, and inflammatory mediators (inducible nitric oxide synthase [iNOS], matrix metalloproteinase–9 [MMP-9], tumor necrosis factor–α [TNF-α], and interleukin-1β [IL-1β]) after cells were transfected with miR-NC (miRNA negative control) or miR-216a mimics and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) damage with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V–FITC/PI, Western blots, and enzyme-linked immunosorbent assay detection. Furthermore, neurological deficit detection and neurological behavior grading were performed to determine the infarction area and neurological deficits.

RESULTS

JAK2 showed its highest level while miR-216a showed its lowest level at day 1 after ischemic reperfusion. However, miR-135 and miR-433 had no obvious change during the process. The luciferase assay data further confirmed that miR-216a can directly target the 3′UTR of JAK2, and overexpression of miR-216a repressed JAK2 protein levels in OGD/R-treated neuronal cells as well as in the MCAO model ischemic region. In addition, overexpression of miR-216a mitigated cell apoptosis both in vitro and in vivo, which was consistent with the effect of knockdown of JAK2. Furthermore, the study found that miR-216a obviously inhibited the inflammatory mediators after OGD/R, including inflammatory enzymes (iNOS and MMP-9) and cytokines (TNF-α and IL-1β). Upregulating miR-216a levels reduced ischemic infarction and improved neurological deficit.

CONCLUSIONS

These findings suggest that upregulation of miR-216a, which targets JAK2, could induce neuroprotection against ischemic injury in vitro and in vivo, which provides a potential therapeutic target for ischemic stroke.

Restricted access

Xin-Yi Gao, Qiao Li, Jing-Run Li, Qian Zhou, Jian-Xun Qu and Zhen-Wei Yao

OBJECTIVE

The authors conducted a study to noninvasively and nonradioactively reveal moyamoya disease (MMD) intracerebral perfusion and perfusion territory supplied by the unilateral internal carotid artery (ICA) and external carotid artery (ECA) and bilateral vertebral arteries (VAs) before surgery and to further identify risk factors for preoperative hemorrhage in adult MMD.

METHODS

Forty-three consecutive adult patients with bilateral MMD underwent unenhanced T1-weighted MRI, territorial arterial spin labeling (t-ASL), and unenhanced 3D time-of-flight MRA (3D-TOF-MRA). Clinical factors, including age, sex, hypertension, diabetes mellitus, hyperlipidemia, current smoking status, and history of taking aspirin, were gathered and stratified. Univariate logistic regression analyses were used to examine the relationship between various risk factors and the occurrence of preoperative hemorrhage. Stepwise multivariate logistic regression analyses were used to determine independent risk factors of preoperative hemorrhage in MMD.

RESULTS

Among the 86 MMD hemispheres, t-ASL revealed 137 perfusion territory shifts in 79 hemispheres. Five distinct categories of perfusion territory shifts were observed on t-ASL maps. The subtypes of perfusion territory shift on t-ASL maps were further subdivided into 2 different categories, group A and group B, in combination with findings on 3D-TOF-MRA. A perfusion territory shift attributable solely to the secondary collaterals was a potential independent risk factor for preoperative hemorrhage (p = 0.026; 95% CI 1.201–18.615; OR 4.729). After eliminating the influence of the secondary collaterals, the primary collaterals had no significant effect on the risk of preoperative hemorrhage (p = 0.182).

CONCLUSIONS

t-ASL could reveal comprehensive MMD cerebral blood perfusion and the vivid perfusion territory shifts fed by the unilateral ICA and ECA and bilateral VAs in a noninvasive, straightforward, nonradioactive, and nonenhanced manner. 3D-TOF-MRA could subdivide t-ASL perfusion territory shifts according to their shunt arteries. A perfusion territory shift attributable to the secondary collaterals is a potential independent risk factor for preoperative hemorrhage in MMD patients. A perfusion territory shift fed by the primary collaterals may not have a strong effect on preoperative hemorrhage in MMD patients. These findings make the combined modalities of t-ASL and 3D-TOF-MRA a feasible tool for MMD disease assessment, management, and surgical strategy planning.