Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jimmy Yang x
Clear All Modify Search
Full access

Jimmy C. Yang, Daniel T. Ginat, Darin D. Dougherty, Nikos Makris and Emad N. Eskandar

Object

Cingulotomy and limbic leucotomy are lesioning surgeries with demonstrated benefit for medically intractable psychiatric illnesses. They represent significant refinements of the prefrontal lobotomy used from the 1930s through the 1950s. However, the associations between anatomical characterization of these lesions and outcome data are not well understood. To elucidate these procedures and associations, the authors sought to define and compare the neuroanatomy of cingulotomy and limbic leucotomy and to test a method that uses neuroanatomical data and voxel-based lesion–symptom mapping (VLSM) to reveal potential refinements to modern psychiatric neurosurgical procedures.

Methods

T1-weighted MR images of patients who had undergone cingulotomy and limbic leucotomy were segmented and registered onto the Montreal Neurological Institute T1-weighted template brain MNI152. Using an atlas-based approach, the authors calculated, by case, the percentage of each anatomical structure affected by the lesion. Because of the infrequency of modern lesion procedures and the requirement for higher-resolution clinical imaging, the sample size was small.

The pilot study correlated cingulotomy and limbic leucotomy lesion characteristics with clinical outcomes for patients with obsessive-compulsive disorder. For this study, preoperative and postoperative Yale-Brown Obsessive Compulsive Scale scores for 11 cingulotomy patients and 8 limbic leucotomy patients were obtained, and lesion masks were defined and compared anatomically by using an atlas-based method. Statistically significant voxels were additionally calculated by using VLSM techniques that correlated lesion characteristics with postoperative scores.

Results

Mean lesion volumes were 13.3 ml for cingulotomy and 11.8 ml for limbic leucotomy. As expected, cingulotomy was isolated to the anterior cingulum. The subcaudate tractotomy portion of limbic leucotomy additionally affected Brodmann area 25, the medial orbitofrontal cortex, and the nucleus accumbens.

Initial results indicated that the dorsolateral regions of the cingulotomy lesion and the posteroventral regions of the subcaudate tractotomy lesion were associated with improved postoperative Yale-Brown Obsessive Compulsive Scale scores.

Conclusions

Cingulotomy and limbic leucotomy are lesioning surgeries that target pathological circuits implicated in psychiatric disease. Lesion analysis and VLSM contextualize outcome data and have the potential to be useful for improving lesioning neurosurgical procedures.

Restricted access

Bryan D. Choi, Daniel K. Lee, Jimmy C. Yang, Caroline M. Ayinon, Christine K. Lee, Douglas Maus, Bob S. Carter, Fred G. Barker II, Pamela S. Jones, Brian V. Nahed, Daniel P. Cahill, Reiner B. See, Mirela V. Simon and William T. Curry

OBJECTIVE

Intraoperative seizures during craniotomy with functional mapping is a common complication that impedes optimal tumor resection and results in significant morbidity. The relationship between genetic mutations in gliomas and the incidence of intraoperative seizures has not been well characterized. Here, the authors performed a retrospective study of patients treated at their institution over the last 12 years to determine whether molecular data can be used to predict the incidence of this complication.

METHODS

The authors queried their institutional database for patients with brain tumors who underwent resection with intraoperative functional mapping between 2005 and 2017. Basic clinicopathological characteristics, including the status of the following genes, were recorded: IDH1/2, PIK3CA, BRAF, KRAS, AKT1, EGFR, PDGFRA, MET, MGMT, and 1p/19q. Relationships between gene alterations and intraoperative seizures were evaluated using chi-square and two-sample t-test univariate analysis. When considering multiple predictive factors, a logistic multivariate approach was taken.

RESULTS

Overall, 416 patients met criteria for inclusion; of these patients, 98 (24%) experienced an intraoperative seizure. Patients with a history of preoperative seizure and those treated with antiepileptic drugs prior to surgery were less likely to have intraoperative seizures (history: OR 0.61 [95% CI 0.38–0.96], chi-square = 4.65, p = 0.03; AED load: OR 0.46 [95% CI 0.26–0.80], chi-square = 7.64, p = 0.01). In a univariate analysis of genetic markers, amplification of genes encoding receptor tyrosine kinases (RTKs) was specifically identified as a positive predictor of seizures (OR 5.47 [95% CI 1.22–24.47], chi-square = 5.98, p = 0.01). In multivariate analyses considering RTK status, AED use, and either 2007 WHO tumor grade or modern 2016 WHO tumor groups, the authors found that amplification of the RTK proto-oncogene, MET, was most predictive of intraoperative seizure (p < 0.05).

CONCLUSIONS

This study describes a previously unreported association between genetic alterations in RTKs and the occurrence of intraoperative seizures during glioma resection with functional mapping. Future models estimating intraoperative seizure risk may be enhanced by inclusion of genetic criteria.