Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Jia-Shu Chen x
Clear All Modify Search
Restricted access

William B. Harris, H. Westley Phillips, Jia Shu Chen, Alexander G. Weil, George M. Ibrahim and Aria Fallah

OBJECTIVE

The objective of this study was to perform an individual participant data meta-analysis to identify preoperative factors associated with a good seizure outcome in children with Rasmussen’s encephalitis (RE) undergoing resective or hemispheric epilepsy surgery.

METHODS

Electronic databases (PubMed, Web of Science, CINAHL) were searched with no language or date restrictions to identify cohort studies of consecutive participants undergoing resective surgery that reported seizure outcomes. The authors recorded all preoperative factors that could plausibly be associated with seizure outcomes and used Cox regression analysis to identify which of these variables were associated with seizure freedom (i.e., Engel class I).

RESULTS

Of 720 citations, 19 articles reporting on 187 participants were eligible. Seizure freedom (Engel class I) was observed in 113 participants (60.4%). On univariate analyses, younger age at disease onset (hazard ratio [HR] 0.906, p = 0.001), younger age at surgery (HR 0.928, p < 0.001), shorter time to surgery (HR 0.921, p = 0.001), and hemispherectomy (HR 0.283, p < 0.001) were all associated with longer time to postoperative seizure recurrence. Additionally, multivariable analysis including the aforementioned variables showed that younger age at surgery (HR 0.946, p = 0.043) and hemispherectomy (HR 0.297, p < 0.001) were independently and significantly associated with a greater time to seizure recurrence and longer duration of seizure freedom.

CONCLUSIONS

The majority of pediatric patients undergoing resective or hemispheric surgery for RE achieve good seizure outcome. Although small retrospective cohort studies are inherently prone to bias, the best available evidence utilizing individual participant data suggests hemispheric surgery and younger age at surgery are associated with good seizure outcomes following epilepsy surgery. Large, multicenter observational studies with long-term follow-up are required to evaluate the risk factors identified in this review.

Restricted access

Andrew Y. Powers, Mauricio B. Pinto, Oliver Y. Tang, Jia-Shu Chen, Cody Doberstein and Wael F. Asaad

OBJECTIVE

Traumatic intracranial hemorrhage (tICH) is a significant source of morbidity and mortality in trauma patients. While prognostic models for tICH outcomes may assist in alerting clinicians to high-risk patients, previously developed models face limitations, including low accuracy, poor generalizability, and the use of more prognostic variables than is practical. This study aimed to construct a simpler and more accurate method of risk stratification for all tICH patients.

METHODS

The authors retrospectively identified a consecutive series of 4110 patients admitted to their institution’s level 1 trauma center between 2003 and 2013. For each admission, they collected the patient’s sex, age, systolic blood pressure, blood alcohol concentration, antiplatelet/anticoagulant use, Glasgow Coma Scale (GCS) score, Injury Severity Score, presence of epidural hemorrhage, presence of subdural hemorrhage, presence of subarachnoid hemorrhage, and presence of intraparenchymal hemorrhage. The final study population comprised 3564 patients following exclusion of records with missing data. The dependent variable under study was patient death. A k-fold cross-validation was carried out with the best models selected via the Akaike Information Criterion. These models risk stratified the study partitions into grade I (< 1% predicted mortality), grade II (1%–10% predicted mortality), grade III (10%–40% predicted mortality), or grade IV (> 40% predicted mortality) tICH. Predicted mortalities were compared with actual mortalities within grades to assess calibration. Concordance was also evaluated. A final model was constructed using the entire data set. Subgroup analysis was conducted for each hemorrhage type.

RESULTS

Cross-validation demonstrated good calibration (p < 0.001 for all grades) with a mean concordance of 0.881 (95% CI 0.865−0.898). In the authors’ final model, older age, lower blood alcohol concentration, antiplatelet/anticoagulant use, lower GCS score, and higher Injury Severity Score were all associated with greater mortality. Subgroup analysis showed successful stratification for subarachnoid, intraparenchymal, grade II–IV subdural, and grade I epidural hemorrhages.

CONCLUSIONS

The authors developed a risk stratification model for tICH of any GCS score with concordance comparable to prior models and excellent calibration. These findings are applicable to multiple hemorrhage subtypes and can assist in identifying low-risk patients for more efficient resource allocation, facilitate family conversations regarding goals of care, and stratify patients for research purposes. Future work will include testing of more variables, validation of this model across institutions, as well as creation of a simplified model whose outputs can be calculated mentally.

Restricted access

Nikhil Bellamkonda, H. Westley Phillips, Jia-Shu Chen, Alexander M. Tucker, Cassia Maniquis, Gary W. Mathern and Aria Fallah

OBJECTIVE

Rasmussen encephalitis (RE) is a rare inflammatory neurological disorder typically involving one hemisphere and resulting in drug-resistant epilepsy and progressive neurological decline. Here, the authors present seizure outcomes in children who underwent epilepsy surgery for RE at a single institution.

METHODS

The records of consecutive patients who had undergone epilepsy surgery for RE at the UCLA Mattel Children’s Hospital between 1982 and 2018 were retrospectively reviewed. Basic demographic information, seizure history, procedural notes, and postoperative seizure and functional outcome data were analyzed.

RESULTS

The cohort included 44 patients, 41 of whom had sufficient data for analysis. Seizure freedom was achieved in 68%, 48%, and 22% of the patients at 1, 5, and 10 years, respectively. The median time to the first seizure for those who experienced seizure recurrence after surgery was 39 weeks (IQR 11–355 weeks). Anatomical hemispherectomy, as compared to functional hemispherectomy, was independently associated with a longer time to postoperative seizure recurrence (HR 0.078, p = 0.03). There was no statistically significant difference in postoperative seizure recurrence between patients with complete hemispherectomy and those who had less-than-hemispheric surgery. Following surgery, 68% of the patients could ambulate and 84% could speak regardless of operative intervention.

CONCLUSIONS

A large proportion of RE patients will have seizure relapse after surgery, though patients with anatomical hemispherectomies may have a longer time to postoperative seizure recurrence. Overall, the long-term data in this study suggest that hemispheric surgery can be seen as palliative treatment for seizures rather than a cure for RE.

Restricted access

Harsh Wadhwa, Sumedh S. Shah, Judy Shan, Justin Cheng, Angad S. Beniwal, Jia-Shu Chen, Sabraj A. Gill, Nikhil Mummaneni, Michael W. McDermott, Mitchel S. Berger and Manish K. Aghi

OBJECTIVE

Neurosurgery is consistently one of the most competitive specialties for resident applicants. The emphasis on research in neurosurgery has led to an increasing number of publications by applicants seeking a successful residency match. The authors sought to produce a comprehensive analysis of research produced by neurosurgical applicants and to establish baseline data of neurosurgery applicant research productivity given the increased emphasis on research output for successful residency match.

METHODS

A retrospective review of publication volume for all neurosurgery interns in 2009, 2011, 2014, 2016, and 2018 was performed using PubMed and Google Scholar. Missing data rates were 11% (2009), 9% (2011), and < 5% (all others). The National Resident Matching Program report “Charting Outcomes in the Match” (ChOM) was interrogated for total research products (i.e., abstracts, presentations, and publications). The publication rates of interns at top 40 programs, students from top 20 medical schools, MD/PhD applicants, and applicants based on location of residency program and medical school were compared statistically against all others.

RESULTS

Total publications per neurosurgery intern (mean ± SD) based on PubMed and Google Scholar were 5.5 ± 0.6 in 2018 (1.7 ± 0.3, 2009; 2.1 ± 0.3, 2011; 2.6 ± 0.4, 2014; 3.8 ± 0.4, 2016), compared to 18.3 research products based on ChOM. In 2018, the mean numbers of publications were as follows: neurosurgery-specific publications per intern, 4.3 ± 0.6; first/last author publications, 2.1 ± 0.3; neurosurgical first/last author publications, 1.6 ± 0.2; basic science publications, 1.5 ± 0.2; and clinical research publications, 4.0 ± 0.5. Mean publication numbers among interns at top 40 programs were significantly higher than those of all other programs in every category (p < 0.001). Except for mean number of basic science publications (p = 0.1), the mean number of publications was higher for interns who attended a top 20 medical school than for those who did not (p < 0.05). Applicants with PhD degrees produced statistically more research in all categories (p < 0.05) except neurosurgery-specific (p = 0.07) and clinical research (p = 0.3). While there was no statistical difference in publication volume based on the geographical location of the residency program, students from medical schools in the Western US produced more research than all other regions (p < 0.01). Finally, research productivity did not correlate with likelihood of medical students staying at their home institution for residency.

CONCLUSIONS

The authors found that the temporal trend toward increased total research products over time in neurosurgery applicants was driven mostly by increased nonindexed research (abstracts, presentations, chapters) rather than by increased peer-reviewed publications. While we also identified applicant-specific factors (MD/PhDs and applicants from the Western US) and an outcome (matching at research-focused institutions) associated with increased applicant publications, further work will be needed to determine the emphasis that programs and applicants will need to place on these publications.

Free access

Guo-chen Sun, Xiao-lei Chen, Yuan-zheng Hou, Xin-guang Yu, Xiao-dong Ma, Gang Liu, Lei Liu, Jia-shu Zhang, Hao Tang, Ru-Yuan Zhu, Ding-Biao Zhou and Bai-nan Xu

OBJECTIVE

Endoscopic removal of intracerebral hematomas is becoming increasingly common, but there is no standard technique. The authors explored the use of a simple image-guided endoscopic method for removal of spontaneous supratentorial hematomas.

METHODS

Virtual reality technology based on a hospital picture archiving and communications systems (PACS) was used in 3D hematoma visualization and surgical planning. Augmented reality based on an Android smartphone app, Sina neurosurgical assist, allowed a projection of the hematoma to be seen on the patient's scalp to facilitate selection of the best trajectory to the center of the hematoma. A obturator and transparent sheath were used to establish a working channel, and an endoscope and a metal suction apparatus were used to remove the hematoma.

RESULTS

A total of 25 patients were included in the study, including 18 with putamen hemorrhages and 7 with lobar cerebral hemorrhages. Virtual reality combined with augmented reality helped in achieving the desired position with the obturator and sheath. The median time from the initial surgical incision to completion of closure was 50 minutes (range 40–70 minutes). The actual endoscopic operating time was 30 (range 15–50) minutes. The median blood loss was 80 (range 40–150) ml. No patient experienced postoperative rebleeding. The average hematoma evacuation rate was 97%. The mean (± SD) preoperative Glasgow Coma Scale (GCS) score was 6.7 ± 3.2; 1 week after hematoma evacuation the mean GCS score had improved to 11.9 ± 3.1 (p < 0.01).

CONCLUSIONS

Virtual reality using hospital PACS and augmented reality with a smartphone app helped precisely localize hematomas and plan the appropriate endoscopic approach. A transparent sheath helped establish a surgical channel, and an endoscope enabled observation of the hematoma's location to achieve satisfactory hematoma removal.