Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jesse Skoch x
  • All content x
Clear All Modify Search
Free access

David C. Lobb, Smruti K. Patel, Brian S. Pan, and Jesse Skoch

OBJECTIVE

Patients presenting with head shape changes phenotypical for craniosynostosis may have incomplete fusion of the involved sutures. The surgical literature is lacking in appropriate management strategies for these patients. In this paper, the authors evaluate their experience with a novel treatment strategy: suturectomy of only the fused portion followed by helmeting therapy in patients with skull deformity secondary to incomplete suture synostosis.

METHODS

Patients with craniosynostosis with incomplete suture fusion requiring operative intervention between 2018 and 2020 were included for evaluation. Patients were selected for partial suturectomy if the patent portion of the suture had a normal appearance. All patients underwent craniectomy of the involved portion of the synostosed suture. Intraoperative ultrasound was used to reassess the degree of fusion at the time of surgery and incision planning. A 2- to 3-cm strip craniectomy was performed under direct visualization through a single minimal access incision. Postoperative helmeting was utilized for all patients. Demographic and perioperative data were collected, including laser scan data in the form of cranial index (CI) and cranial vault asymmetry (CVA), defined as the difference between two diagonal measurements, from the frontozygomaticus to the opposite eurion.

RESULTS

Four males and 1 female with a mean age of 2.8 months (range 1.1–3.9 months) at presentation were included. All patients had incomplete sagittal synostosis (one patient also had an incomplete left lambdoid synostosis and another had an incomplete left coronal synostosis). The mean age at surgery was 3.5 months (range 2.0–4.7 months) without any major complications. All patients were compliant with postoperative helmeting. The average age at the last follow-up was 12.8 months (range 5.3–23.7 months) with a mean follow-up duration of 9.3 months (range 0.5–19.6 months). Final laser scan evaluations were available for 3 patients and showed an improvement of the CI from an average of 71.3 (range 70–73) to 84.3 (range 82–86). The CVA improved from an average of 9.67 mm (range 2–22 mm) to 1.67 mm (range 1–2 mm).

CONCLUSIONS

Minimally invasive direct excision of the involved portion of fused cranial sutures followed by helmet therapy for phenotypical craniosynostosis is a safe and effective treatment strategy. This technique is suitable for very young patients and appears to offer similar outcomes to complete suturectomy. Further studies are required to see if this approach reduces the deformity severity for patients requiring vault remodeling later in life.

Restricted access

Smruti K. Patel, Jorge Zamorano-Fernández, Carlie McCoy, and Jesse Skoch

OBJECTIVE

External magnetic forces can have an impact on programmable valve mechanisms and potentially alter the opening pressure. As wearable technology has begun to permeate mainstream living, there is a clear need to provide information regarding safety of these devices for use near a programmable valve (PV). The aim of this study was to evaluate the magnetic fields of reference devices using smartphone-integrated magnetometers and compare the results with published shunt tolerances.

METHODS

Five smartphones from different manufacturers were used to evaluate the magnetic properties of various commonly used (n = 6) and newer-generation (n = 10) devices using measurements generated from the internal smartphone magnetometers. PV tolerance testing using calibrated magnets of varying field strengths was also performed by smartphone magnetometers.

RESULTS

All tested smartphone-integrated magnetometers had a factory sensor saturation point at around 5000 µT or 50 Gauss (G). This is well below the threshold at which a magnet can potentially deprogram a shunt, based on manufacturer reports as well as the authors’ experimental data with a threshold of more than 300 G. While many of the devices did saturate the smartphone sensors at the source, the magnetic flux density of the objects decreases significantly at 2 inches.

CONCLUSIONS

The existence of an upper limit on the magnetometers of all the smartphones used, although well below the published deprogramming threshold for modern programmable valves, does not allow us to give precise recommendations on those devices that saturate the sensor. Based on the authors’ experimental data using smartphone-integrated magnetometers, they concluded that devices that measure < 40 G can be used safely close to a PV.

Full access

Vernard S. Fennell, Sheri Palejwala, Jesse Skoch, David A. Stidd, and Ali A. Baaj

Object

Experience with freehand thoracic pedicle screw placement is well described in the literature. Published techniques rely on various starting points and trajectories for each level or segment of the thoracic spine. Furthermore, few studies provide specific guidance on sagittal and axial trajectories. The goal of this study was to propose a uniform entry point and sagittal trajectory for all thoracic levels during freehand pedicle screw placement and determine the accuracy of this technique.

Methods

The authors retrospectively reviewed postoperative CT scans of 33 consecutive patients who underwent open, freehand thoracic pedicle-screw fixation using a uniform entry point and sagittal trajectory for all levels. The same entry point for each level was defined as a point 3 mm caudal to the junction of the transverse process and the lateral margin of the superior articulating process, and the sagittal trajectory was always orthogonal to the dorsal curvature of the spine at that level. The medial angulation (axial trajectory) was approximately 30° at T-1 and T-2, and 20° from T-3 to T-12. Breach was defined as greater than 25% of the screw diameter residing outside of the pedicle or vertebral body.

Results

A total of 219 thoracic pedicle screws were placed with a 96% accuracy rate. There were no medial breaches and 9 minor lateral breaches (4.1%). None of the screws had to be repositioned postoperatively, and there were no neurovascular complications associated with the breaches.

Conclusions

It is feasible to place freehand thoracic pedicle screws using a uniform entry point and sagittal trajectory for all levels. The entry point does not have to be adjusted for each level as reported in existing studies, although this technique was not tested in severe scoliotic spines. While other techniques are effective and widely used, this particular method provides more specific parameters and may be easier to learn, teach, and adopt.

Full access

Mauricio J. Avila, Jesse Skoch, Vernard S. Fennell, Sheri K. Palejwala, Christina M. Walter, Samuel Kim, and Ali A. Baaj

Primary bone tumors of the spine are rare entities with a poor prognosis if left untreated. En bloc excision is the preferred surgical approach to minimize the rate of recurrence. Paraspinal primary bone tumors are even less common. In this technical note the authors present an approach to the en bloc resection of primary bone tumors of the paraspinal thoracic region with posterior vertebral body hemiosteotomies and lateral thoracotomy. They also describe 2 illustrative cases.