Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Jennifer N. Lehrman x
  • All content x
Clear All Modify Search
Restricted access

Laura A. Snyder, Jennifer N. Lehrman, Ram Kumar Menon, Jakub Godzik, Anna G. U. S. Newcomb, and Brian P. Kelly

OBJECTIVE

Minimally invasive transforaminal interbody fusion techniques vary among surgeons. One decision point is whether to perform a unilateral facetectomy (UF), a unilateral facetectomy plus partial contralateral facetectomy (UF/PF), or a complete bilateral facetectomy (CBF). The authors therefore compared the biomechanical benefits of all 3 types of facetectomies to determine which approach produces improved biomechanical outcomes.

METHODS

Seven human cadaveric specimens (L3–S1) were potted and prepped for UF, with full facet removal, hemilaminectomy, discectomy, and pedicle screw placement. After distraction, a fixed interbody spacer was placed, and compression was performed. A final fixation configuration was performed by locking the rods across the screws posteriorly with bilateral compression. Final lordosis angle and change and foraminal height were measured, and standard nondestructive flexibility tests were performed to assess intervertebral range of motion (ROM) and compressive stiffness. The same procedure was followed for UF/PF and CBF in all 7 specimens.

RESULTS

All 3 conditions demonstrated similar ROM and compressive stiffness. No statistically significant differences occurred with distraction, but CBF demonstrated significantly greater change than UF in mean foraminal height after bilateral posterior compression (1.90 ± 0.62 vs 1.00 ± 0.45 mm, respectively, p = 0.04). With compression, the CBF demonstrated significantly greater mean ROM than the UF (2.82° ± 0.83° vs 2.170° ± 1.10°, p = 0.007). The final lordosis angle was greatest with CBF (3.74° ± 0.70°) and lowest with UF (2.68° ± 1.28°). This finding was statistically significant across all 3 conditions (p ≤ 0.04).

CONCLUSIONS

Although UF/PF and CBF may require slightly more time and effort and incur more risk than UF, the potential improvement in sagittal balance may be worthwhile for select patients.

Restricted access

Jakub Godzik, Jennifer N. Lehrman, Anna G. U. S. Newcomb, Ram Kumar Menon, Alexander C. Whiting, Brian P. Kelly, and Laura A. Snyder

OBJECTIVE

Transforaminal lumbar interbody fusion (TLIF) is commonly used for lumbar fusion, such as for foraminal decompression, stabilization, and improving segmental lordosis. Although many options exist, surgical success is contingent on matching design strengths with surgical goals. The goal in the present study was to investigate the effects of an expandable interbody spacer and 2 traditional static spacer designs in terms of stability, compressive stiffness, foraminal height, and segmental lordosis.

METHODS

Standard nondestructive flexibility tests (7.5 N⋅m) were performed on 8 cadaveric lumbar specimens (L3–S1) to assess intervertebral stability of 3 types of TLIF spacers at L4–5 with bilateral posterior screw-rod (PSR) fixation. Stability was determined as range of motion (ROM) in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Compressive stiffness was determined with axial compressive loading (300 N). Foraminal height, disc height, and segmental lordosis were evaluated using radiographic analysis after controlled PSR compression (170 N). Four conditions were tested in random order: 1) intact, 2) expandable interbody cage with PSR fixation (EC+PSR), 3) static ovoid cage with PSR fixation (SOC+PSR), and 4) static rectangular cage with PSR fixation (SRC+PSR).

RESULTS

All constructs demonstrated greater stability than the intact condition (p < 0.001). No significant differences existed among constructs in ROM (FE, AR, and LB) or compressive stiffness (p ≥ 0.66). The EC+PSR demonstrated significantly greater foraminal height at L4–5 than SRC+PSR (21.1 ± 2.6 mm vs 18.6 ± 1.7 mm, p = 0.009). EC+PSR demonstrated higher anterior disc height than SOC+PSR (14.9 ± 1.9 mm vs 13.6 ± 2.2 mm, p = 0.04) and higher posterior disc height than the intact condition (9.4 ± 1.5 mm vs 7.1 ± 1.0 mm, p = 0.002), SOC+PSR (6.5 ± 1.8 mm, p < 0.001), and SRC+PSR (7.2 ± 1.2 mm, p < 0.001). There were no significant differences in segmental lordosis among SOC+PSR (10.1° ± 2.2°), EC+PSR (8.1° ± 0.5°), and SRC+PSR (11.1° ± 3.0°) (p ≥ 0.06).

CONCLUSIONS

An expandable interbody spacer provided stability, stiffness, and segmental lordosis comparable to those of traditional nonexpandable spacers of different shapes, with increased foraminal height and greater disc height. These results may help inform decisions about which interbody implants will best achieve surgical goals.

Restricted access

Piyanat Wangsawatwong, Anna G. U. Sawa, Bernardo de Andrada Pereira, Jennifer N. Lehrman, Luke K. O’Neill, Jay D. Turner, Juan S. Uribe, and Brian P. Kelly

OBJECTIVE

Cortical screw–rod (CSR) fixation has emerged as an alternative to the traditional pedicle screw–rod (PSR) fixation for posterior lumbar fixation. Previous studies have concluded that CSR provides the same stability in cadaveric specimens as PSR and is comparable in clinical outcomes. However, recent clinical studies reported a lower incidence of radiographic and symptomatic adjacent-segment degeneration with CSR. No biomechanical study to date has focused on how the adjacent-segment mobility of these two constructs compares. This study aimed to investigate adjacent-segment mobility of CSR and PSR fixation, with and without interbody support (lateral lumbar interbody fusion [LLIF] or transforaminal lumbar interbody fusion [TLIF]).

METHODS

A retroactive analysis was done using normalized range of motion (ROM) data at levels adjacent to single-level (L3–4) bilateral screw–rod fixation using pedicle or cortical screws, with and without LLIF or TLIF. Intact and instrumented specimens (n = 28, all L2–5) were tested using pure moment loads (7.5 Nm) in flexion, extension, lateral bending, and axial rotation. Adjacent-segment ROM data were normalized to intact ROM data. Statistical comparisons of adjacent-segment normalized ROM between two of the groups (PSR followed by PSR+TLIF [n = 7] and CSR followed by CSR+TLIF [n = 7]) were performed using 2-way ANOVA with replication. Statistical comparisons among four of the groups (PSR+TLIF [n = 7], PSR+LLIF [n = 7], CSR+TLIF [n = 7], and CSR+LLIF [n = 7]) were made using 2-way ANOVA without replication. Statistical significance was set at p < 0.05.

RESULTS

Proximal adjacent-segment normalized ROM was significantly larger with PSR than CSR during flexion-extension regardless of TLIF (p = 0.02), or with either TLIF or LLIF (p = 0.04). During lateral bending with TLIF, the distal adjacent-segment normalized ROM was significantly larger with PSR than CSR (p < 0.001). Moreover, regardless of the types of screw-rod fixations (CSR or PSR), TLIF had a significantly larger normalized ROM than LLIF in all directions at both proximal and distal adjacent segments (p ≤ 0.04).

CONCLUSIONS

The use of PSR versus CSR during single-level lumbar fusion can significantly affect mobility at the adjacent segment, regardless of the presence of TLIF or with either TLIF or LLIF. Moreover, the type of interbody support also had a significant effect on adjacent-segment mobility.

Restricted access

Jakub Godzik, Bernardo de Andrada Pereira, Anna G. U. Sawa, Jennifer N. Lehrman, Randall J. Hlubek, Brian P. Kelly, and Jay D. Turner

OBJECTIVE

The objective of this study was to evaluate a novel connector design and compare it with traditional side connectors, such as a fixed-angle connector (FAC) and a variable-angle connector (VAC), with respect to lumbosacral stability and instrumentation strain.

METHODS

Standard nondestructive flexibility tests (7.5 Nm) and compression tests (400 N) were performed using 7 human cadaveric specimens (L1–ilium) to compare range of motion (ROM) stability, posterior rod strain (RS), and sacral screw bending moment (SM). Directions of motion included flexion, extension, left and right lateral bending, left and right axial rotation, and compression. Conditions included 1) the standard 2-rod construct (2R); 2) the dual-tulip head (DTH) with 4-rod construct (4R); 3) FACs with 4R; and 4) VACs with 4R. Data were analyzed using repeated-measures ANOVA.

RESULTS

Overall, there were no statistically significant differences in ROM across the lumbosacral junction among conditions (p > 0.07). Compared with 2R, DTH and FAC significantly reduced RS in extension, left axial rotation, and compression (p ≤ 0.03). VAC significantly decreased RS compared with 2R in flexion, extension, left axial rotation, right axial rotation, and compression (p ≤ 0.03), and significantly decreased RS compared with DTH in extension (p = 0.02). DTH was associated with increased SM in left and right axial rotation compared with 2R (p ≤ 0.003) and in left and right lateral bending and left and right axial rotation compared with FAC and VAC (p ≤ 0.02). FAC and VAC were associated with decreased SM compared with 2R in right and left lateral bending (p ≤ 0.03).

CONCLUSIONS

RS across the lumbosacral junction can be high. Supplemental rod fixation with DTH is an effective strategy for reducing RS across the lumbosacral junction. However, the greatest reduction in RS and SM was achieved with a VAC that allowed for straight (uncontoured) accessory rod placement.

Restricted access

Jakub Godzik, Bernardo de Andrada Pereira, Anna G. U. Sawa, Jennifer N. Lehrman, Gregory M. Mundis Jr., Randall J. Hlubek, Juan S. Uribe, Brian P. Kelly, and Jay D. Turner

OBJECTIVE

Anterior column realignment (ACR) is a new minimally invasive approach for deformity correction that achieves a degree of lordosis similar to that obtained with pedicle subtraction osteotomy (PSO). This study compared the biomechanical profiles of ACR with PSO using range of motion (ROM) and posterior rod strain (RS) to gain insight into the ACR technique and the necessary surgical strategies to optimize longevity and stability.

METHODS

An in vitro biomechanical study using standard flexibility testing (7.5 Nm) was performed on 14 human cadaveric specimens, separated into 2 groups similar in age, sex, bone mineral density, and intact ROM. For group 1 (n = 7, instrumented L1–S1), a 30° ACR was performed at L3–4. For group 2 (n = 7, instrumented T12–S1), a 30° L3 PSO was performed. Specimens were subjected to nondestructive loads in flexion, extension, axial rotation, lateral bending, and compression. Conditions tested were 1) intact, 2) pedicle screw with 2 rods (PSR), 3) ACR or PSO with 2 rods (+2R), and 4) ACR or PSO with 4 rods (+4R). Primary outcome measures of interest were ROM stability and posterior RS at L3–4.

RESULTS

No difference was observed between groups in lumbar lordosis (p = 0.83) or focal angular lordosis at L3–4 (p = 0.75). No differences in stability were observed between ACR+2R and PSO+2R (p ≥ 0.06);​ however, ACR+2R was significantly less stable than PSR in flexion and extension (p ≤ 0.02), whereas PSO+2R was less stable than PSR only in extension (p = 0.04). ACR+4R was more stable than ACR+2R in flexion, extension, left axial rotation, and compression (p ≤ 0.02). PSO+4R was more stable than PSO+2R only in extension (p = 0.04). Both ACR+2R and PSO+2R resulted in significant increases in RS in flexion and extension compared with PSR (p ≤ 0.032). RS in flexion and extension decreased significantly for ACR+4R versus ACR+2R and for PSO+4R versus PSO+2R (p ≤ 0.047). PSO+2R yielded lower RS than ACR+2R in compression (p = 0.03). No differences existed in RS between ACR+4R and PSO+4R (p ≥ 0.05).

CONCLUSIONS

Although ACR appeared to be slightly more destabilizing than PSO using traditional 2R fixation, both techniques resulted in significant increases in posterior RS. The 4R technique increased stability in ACR and decreased RS in both ACR and PSO but may be more beneficial in ACR. Longer-term clinical studies are needed to appropriately identify the durability of the ACR technique in deformity correction.

Open access

Bernardo de Andrada Pereira, Jennifer N. Lehrman, Anna G. U. Sawa, Derek P. Lindsey, Scott A. Yerby, Jakub Godzik, Alexis M. Waguespack, Juan S. Uribe, and Brian P. Kelly

OBJECTIVE

S2-alar-iliac (S2AI) screw fixation effectively ensures stability and enhances fusion in long-segment constructs. Nevertheless, pelvic fixation is associated with a high rate of mechanical failure. Because of the transarticular nature of the S2AI screw, adding a second point of fixation may provide additional stability and attenuate strains. The objective of the study was to evaluate changes in stability and strain with the integration of a sacroiliac (SI) joint fusion device, implanted through a novel posterior SI approach, supplemental to posterior long-segment fusion.

METHODS

L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests in the following conditions: 1) intact, 2) L2–S1 pedicle screw and rod fixation with L5–S1 interbody fusion, 3) added S2AI screws, and 4) added bilateral SI joint fixation (SIJF). The range of motion (ROM), rod strain, and screw bending moments (S1 and S2AI) were analyzed.

RESULTS

S2AI fixation decreased L2–S1 ROM in flexion-extension (p ≤ 0.04), L5–S1 ROM in flexion-extension and compression (p ≤ 0.004), and SI joint ROM during flexion-extension and lateral bending (p ≤ 0.03) compared with S1 fixation. SI joint ROM was significantly less with SIJF in place than with the intact joint, S1, and S2AI fixation in flexion-extension and lateral bending (p ≤ 0.01). The S1 screw bending moment decreased following S2AI fixation by as much as 78% in extension, but with statistical significance only in right axial rotation (p = 0.03). Extending fixation to S2AI significantly increased the rod strain at L5–S1 during flexion, axial rotation, and compression (p ≤ 0.048). SIJF was associated with a slight increase in rod strain versus S2AI fixation alone at L5–S1 during left lateral bending (p = 0.048). Compared with the S1 condition, fixation to S2AI increased the mean rod strain at L5–S1 during compression (p = 0.048). The rod strain at L5–S1 was not statistically different with SIJF compared with S2AI fixation (p ≥ 0.12).

CONCLUSIONS

Constructs ending with an S2AI screw versus an S1 screw tended to be more stable, with reduced SI joint motion. S2AI fixation decreased the S1 screw bending moments compared with fixation ending at S1. These benefits were paired with increased rod strain at L5–S1. Supplementation of S2AI fixation with SIJF implants provided further reductions (approximately 30%) in the sagittal plane and lateral bending SI joint motion compared with fixation ending at the S2AI position. This stability was not paired with significant changes in rod or screw strains.