Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jeffrey S. Gerdes x
Clear All Modify Search
Restricted access

Michael G. Muhonen, Scott C. Robertson, Jeffrey S. Gerdes and Christopher M. Loftus

✓ Serotonin (5-HT) produces constriction of peripheral collateral blood vessels. Using an animal model, the authors tested the hypothesis that 5-HT constricts collateral vessels in the cerebrum. A branch of the middle cerebral artery (MCA) was occluded proximally and cannulated distally in anesthetized dogs. Blood flow to the area at risk for infarction was detected by perfusing the cannulated MCA branch with microsphere-free blood during systemic injection of radioactive microspheres (shadow flow technique). Blood flow to collateral-dependent and normal cerebrum was measured during intravenous infusion of 5-HT (10 and 40 mg/kg/minute). Serotonin produced a dose-related reduction of blood flow to collateral-dependent cerebrum, increased collateral vessel resistance in large cerebral arteries and collateral vessels, and decreased cerebral artery perfusion pressure. In contrast, blood flow to normal cerebrum was not altered because a decrease in small vessel resistance effectively compensated for a decrease in MCA perfusion pressure. These findings indicate that 5-HT produces constriction of collateral vessels in the cerebrum. This response is clearly different from normal small cerebral vessels, which dilate during 5-HT infusion.