Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jeffrey R. Tenney x
  • Refine by Access: all x
Clear All Modify Search
Free access

Responsive neurostimulation device therapy in pediatric patients with complex medically refractory epilepsy

Sara M. Hartnett, Hansel M. Greiner, Ravindra Arya, Jeffrey R. Tenney, Gewalin Aungaroon, Katherine Holland, James L. Leach, Ellen L. Air, Jesse Skoch, and Francesco T. Mangano

OBJECTIVE

Pediatric epilepsy is characterized as drug resistant in 20%–30% of patients and defined as persistent seizures despite adequate treatment with two first-line antiepileptic medications. The American Academy of Neurology advocates surgical options earlier in the treatment of epilepsy to provide long-term seizure reduction. The new development of minimally invasive approaches has recently allowed for surgical options to patients not previously deemed surgical candidates. These may include patients with bilateral, deep, eloquent, or poorly localizing epileptogenic foci. To this end, responsive neurostimulation (RNS) is an FDA-approved closed-loop neuromodulation device for adjuvant treatment of adults with medically intractable epilepsy arising from one or multiple foci.

METHODS

In this study, the authors describe their initial institutional experience with the use of RNS in pediatric patients with drug-resistant epilepsy. An IRB-approved retrospective review was conducted of 8 pediatric patients who underwent RNS implantation at Cincinnati Children’s Hospital Medical Center between 2019 and 2021.

RESULTS

Eight patients met the inclusion criteria for the study. The average age at the time of surgery was 14.7 years (range 8–18 years) with a mean follow-up of 16.5 months. All patients underwent invasive monitoring with stereo-EEG, subdural grid placement, or a combination of both. All patients had either bilateral or eloquent cortex targets. Trajectories were based on noninvasive (phase 1) and invasive (phase 2) seizure onset zone localization data. Four (50%) of the 8 patients underwent surgical intervention for epilepsy prior to RNS placement. RNS electrodes were placed with robot-assisted guidance in a hybrid operating room with intraoperative CT and electrocorticography. The authors demonstrated individualized RNS electrode trajectory and placement with targets in the amygdala/hippocampus, bilateral insula, bilateral parietal and occipital targets, and frontoparietal regions for a total of 14 implanted electrodes. One adverse event occurred, a wound infection requiring return to the operating room for removal of the RNS implant. All patients demonstrated a reduction in seizure frequency. All patients achieved > 50% reduction in seizure frequency at last follow-up.

CONCLUSIONS

RNS implantation in carefully selected pediatric patients appears safe and efficacious in reducing seizure burden with a low rate of operative complications.

Free access

Comparison of outcomes after stereoelectroencephalography and subdural grid monitoring in pediatric tuberous sclerosis complex

Thomas Larrew, Jesse Skoch, S. Katie Z. Ihnen, Ravindra Arya, Katherine D. Holland, Jeffrey R. Tenney, Paul S. Horn, James L. Leach, Darcy A. Krueger, Hansel M. Greiner, and Francesco T. Mangano

OBJECTIVE

Patients with tuberous sclerosis complex (TSC) epilepsy present with unique clinical challenges such as early seizure onset and high rates of intractability and multifocality. Although there are numerous studies about the safety and efficacy of stereoelectroencephalography (SEEG), this topic has not been studied in TSC patients who have distinct epilepsy profiles. The authors investigated subdural grid (SDG) and SEEG monitoring to determine whether these procedures lead to similar seizure and safety outcomes and to identify features unique to this pediatric population.

METHODS

TSC patients who underwent SDG or SEEG placement and a second epilepsy surgery during the period from 2007 to 2021 were included in this single-center retrospective cohort analysis. Various patient, hospitalization, and epilepsy characteristics were collected.

RESULTS

A total of 50 TSC patients were included in this study: 30 were included in the SDG cohort and 20 in the SEEG cohort. Baseline weekly seizure count did not significantly differ between the 2 groups (p = 0.412). The SEEG group had a greater mean baseline number of antiepileptic drugs (AEDs) (3.0 vs 2.0, p = 0.003), higher rate of previous surgical interventions (25% vs 0%, p = 0.007), and larger proportion of patients who underwent bilateral monitoring (50% vs 13.3%, p = 0.005). Despite this, there was no significant difference in seizure freedom between the SDG and SEEG cohorts. The mean reduction in seizure count was 84.9% and 47.8% of patients were seizure free at last follow-up (mean 79.4 months). SEEG trended toward being a safer procedure than SDG monitoring, with a shorter mean ICU stay (0.7 days vs 3.9 days, p < 0.001), lower blood transfusion rate (0% vs 13.3%, p = 0.140), and lower surgical complication rate (0% vs 10%, p = 0.265).

CONCLUSIONS

In the comparison of the SDG and SEEG cohorts, the SEEG group included patients who appeared to receive more aggressive management and have a higher rate of multifocality, more prior surgical interventions, more AEDs at baseline, and a higher rate of bilateral invasive monitoring. Despite this, the SEEG cohort had similar seizure outcomes and a trend toward increased safety. Based on these findings, SEEG appears to allow for monitoring of a wider breadth of TSC patients given its minimally invasive nature and its relative simplicity for monitoring numerous regions of the brain.

Restricted access

Long-term outcomes of resective epilepsy surgery after invasive presurgical evaluation in children with tuberous sclerosis complex and bilateral multiple lesions

Ravindra Arya, Jeffrey R. Tenney, Paul S. Horn, Hansel M. Greiner, Katherine D. Holland, James L. Leach, Michael J. Gelfand, Leonid Rozhkov, Hisako Fujiwara, Douglas F. Rose, David N. Franz, and Francesco T. Mangano

OBJECT

Tuberous sclerosis complex (TSC) with medically refractory epilepsy is characterized by multifocal brain abnormalities, traditionally indicating poor surgical candidacy. This single-center, retrospective study appraised seizurerelated, neuropsychological, and other outcomes of resective surgery in TSC patients with medically refractory epilepsy, and analyzed predictors for these outcomes.

METHODS

Patients with multilesional TSC who underwent epilepsy surgery between 2007 and 2012 were identified from an electronic database. All patients underwent multimodality noninvasive and subsequent invasive evaluation. Seizure outcomes were classified using the International League Against Epilepsy (ILAE) scale. The primary outcome measure was complete seizure remission (ILAE Class 1). Secondary outcome measures included 50% responder rate, change in full-scale IQ, electroencephalography improvement, and reduction in antiepileptic drug (AED) burden.

RESULTS

A total of 37 patients with TSC underwent resective surgery during the study period. After a mean follow-up of 5.68 ± 3.67 years, 56.8% achieved complete seizure freedom (ILAE Class 1) and 86.5% had ILAE Class 4 outcomes or better. The full-scale IQ on follow-up was significantly higher in patients with ILAE Class 1 outcome (66.70 ± 12.36) compared with those with ILAE Class 2 or worse outcomes (56.00 ± 1.41, p = 0.025). In 62.5% of the patients with ILAE Class 2 or worse outcomes, the number of AEDs were found to be significantly reduced (p = 0.004).

CONCLUSIONS

This study substantiates the evidence for efficacy of resective epilepsy surgery in patients with bilateral multilesional TSC. More than half of the patients were completely seizure free. Additionally, a high proportion achieved clinically meaningful reduction in seizure burden and the number of AEDs.