Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Jed Hartings x
Clear All Modify Search
Full access

Jed A. Hartings, Laura B. Ngwenya, Christopher P. Carroll and Brandon Foreman

Full access

Andrew P. Carlson, C. William Shuttleworth, Sebastian Major, Coline L. Lemale, Jens P. Dreier and Jed A. Hartings

The authors report on a 57-year-old woman in whom progression to brain death occurred on day 9 after aneurysmal subarachnoid hemorrhage without evidence of significant brain edema or vasospasm. Neuromonitoring demonstrated that brain death was preceded by a series of cortical spreading depolarizations that occurred in association with progressive hypoxic episodes. The depolarizations induced final electrical silence in the cortex and ended with a terminal depolarization that persisted > 7 hours. To the authors’ knowledge, this is the first report of terminal spreading depolarization in the human brain prior to clinical brain death and major cardiopulmonary failure.

Restricted access

Jed A. Hartings, Steven Vidgeon, Anthony J. Strong, Chris Zacko, Achala Vagal, Norberto Andaluz, Thomas Ridder, Richard Stanger, Martin Fabricius, Bruce Mathern, Clemens Pahl, Christos M. Tolias and M. Ross Bullock


Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome.


Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic monitoring of spreading depolarizations; injury characteristics, physiological monitoring data, and 6-month outcomes were collected prospectively. CT scans and medical records were reviewed retrospectively to determine lesion characteristics, surgical indications, and procedures performed.


Patients enrolled at KCH were significantly older than those enrolled at VCU (48 vs 34 years, p < 0.01) and falls were more commonly the cause of TBI in the KCH group than in the VCU group. Otherwise, KCH and VCU patients had similar prognoses, lesion types (subdural hematomas: 30%–35%; parenchymal contusions: 48%–52%), signs of mass effect (midline shift ≥ 5 mm: 43%–52%), and preoperative intracranial pressure (ICP). At VCU, however, surgeries were performed earlier (median 0.51 vs 0.83 days posttrauma, p < 0.05), bone flaps were larger (mean 82 vs 53 cm2, p < 0.001), and craniectomies were more common (performed in 75% vs 44% of cases, p < 0.05). Postoperatively, maximum ICP values were lower at VCU (mean 22.5 vs 31.4 mm Hg, p < 0.01). Differences in incidence of spreading depolarizations (KCH: 63%, VCU: 42%, p = 0.13) and poor outcomes (KCH: 54%, VCU: 33%, p = 0.14) were not significant. In a subgroup analysis of only those patients who underwent early (< 24 hours) lesion evacuation (KCH: n = 14; VCU: n = 16), however, VCU patients fared significantly better. In the VCU patients, bone flaps were larger (mean 85 vs 48 cm2 at KCH, p < 0.001), spreading depolarizations were less common (31% vs 86% at KCH, p < 0.01), postoperative ICP values were lower (mean: 20.8 vs 30.2 mm Hg at KCH, p < 0.05), and good outcomes were more common (69% vs 29% at KCH, p < 0.05). Spreading depolarizations were the only significant predictor of outcome in multivariate analysis.


This comparative-effectiveness study provides evidence for major practice variation in surgical management of severe TBI. Although ages differed between the 2 cohorts, the results suggest that a more aggressive approach, including earlier surgery, larger craniotomy, and removal of bone flap, may reduce ICP, prevent cortical spreading depolarizations, and improve outcomes. In particular, patients requiring evacuation of subdural hematomas and contusions may benefit from decompressive craniectomy in conjunction with lesion evacuation, even when elevated ICP is not a factor in the decision to perform surgery.

Restricted access

Angelos G. Kolias, Peter J. Hutchinson, David K. Menon, Geoffrey T. Manley, Clare N. Gallagher and Franco Servadei