Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jay Dorsey x
Clear All Modify Search
Full access

John Y. K. Lee, Sukhmeet Sandhu, Denise Miller, Timothy Solberg, Jay F. Dorsey and Michelle Alonso-Basanta


Gamma Knife radiosurgery (GKRS) utilizes cobalt-60 as its radiation source, and thus dose rate varies as the fixed source decays over its half-life of approximately 5.26 years. This natural decay results in increasing treatment times when delivering the same cumulative dose. It is also possible, however, that the biological effective dose may change based on this dose rate even if the total dose is kept constant. Because patients are generally treated in a uniform manner, radiosurgery for trigeminal neuralgia (TN) represents a clinical model whereby biological efficacy can be tested. The authors hypothesized that higher dose rates would result in earlier and more complete pain relief but only if measured with a sensitive pain assessment tool.


One hundred thirty-three patients were treated with the Gamma Knife Model 4C unit at a single center by a single neurosurgeon during a single cobalt life cycle from January 2006 to May 2012. All patients were treated with 80 Gy with a single 4-mm isocenter without blocking. Using an output factor of 0.87, dose rates ranged from 1.28 to 2.95 Gy/min. The Brief Pain Inventory (BPI)-Facial was administered before the procedure and at the first follow-up office visit 1 month from the procedure (mean 1.3 months). Phone calls were made to evaluate patients after their procedures as part of a retrospective study. Univariate and multivariate linear regression was performed on several independent variables, including sex, age in deciles, diagnosis, follow-up duration, prior surgery, and dose rate.


In the short-term analysis (mean 1.3 months), patients’ self-reported pain intensity at its worst was significantly correlated with dose rate on multivariate analysis (p = 0.028). Similarly, patients’ self-reported interference with activities of daily living was closely correlated with dose rate on multivariate analysis (p = 0.067). A 1 Gy/min decrease in dose rate resulted in a 17% decrease in pain intensity at its worst and a 22% decrease in pain interference with activities of daily living. In longer-term follow-up (mean 1.9 years), GKRS with higher dose rates (> 2.0 Gy/min; p = 0.007) and older age in deciles (p = 0.012) were associated with a lower likelihood of recurrence of pain.


Prior studies investigating the role of dose rate in Gamma Knife radiosurgical ablation for TN have not used validated outcome tools to measure pain preoperatively. Consequently, differences in pain outcomes have been difficult to measure. By administering pain scales both preoperatively as well as postoperatively, the authors have identified statistically significant differences in pain intensity and pain interference with activities of daily living when comparing higher versus lower dose rates. Radiosurgery with a higher dose rate results in more pain relief at the early follow-up evaluation, and it may result in a lower recurrence rate at later follow-up.

Free access

Eric Ojerholm, John Y. K. Lee, Jayesh P. Thawani, Denise Miller, Donald M. O'Rourke, Jay F. Dorsey, Geoffrey A. Geiger, Suneel Nagda, James D. Kolker, Robert A. Lustig and Michelle Alonso-Basanta


Following resection of a brain metastasis, stereotactic radiosurgery (SRS) to the cavity is an emerging alternative to postoperative whole-brain radiation therapy (WBRT). This approach attempts to achieve local control without the neurocognitive risks associated with WBRT. The authors aimed to report the outcomes of a large patient cohort treated with this strategy.


A retrospective review identified 91 patients without a history of WBRT who received Gamma Knife (GK) SRS to 96 metastasis resection cavities between 2007 and 2013. Patterns of intracranial control were examined in the 86 cases with post-GK imaging. Survival, local failure, and distant failure were estimated by the Kaplan-Meier method. Prognostic factors were tested by univariate (log-rank test) and multivariate (Cox proportional hazards model) analyses.


Common primary tumors were non–small cell lung (43%), melanoma (14%), and breast (13%). The cases were predominantly recursive partitioning analysis Class I (25%) or II (70%). Median preoperative metastasis diameter was 2.8 cm, and 82% of patients underwent gross-total resection. A median dose of 16 Gy was delivered to the 50% isodose line, encompassing a median treatment volume of 9.2 cm3. Synchronous intact metastases were treated in addition to the resection bed in 43% of cases. Patients survived a median of 22.3 months from the time of GK. Local failure developed in 16 cavities, for a crude rate of 18% and 1-year actuarial local control of 81%. Preoperative metastasis diameter ≥ 3 cm and residual or recurrent tumor at the time of GK were associated with local failure (p = 0.04 and 0.008, respectively). Distant intracranial failure occurred in 55 cases (64%) at a median of 7.3 months from GK. Salvage therapies included WBRT and additional SRS in 33% and 31% of patients, respectively. Leptomeningeal carcinomatosis developed in 12 cases (14%) and was associated with breast histology and infratentorial cavities (p = 0.024 and 0.012, respectively).


This study bolsters the existing evidence for SRS to the resection bed. Local control rates are high, but patients with larger preoperative metastases or residual/recurrent tumor at the time of SRS are more likely to fail at the cavity. While most patients develop distant intracranial failure, an SRS approach spared or delayed WBRT in the majority of cases. The risk of leptomeningeal carcinomatosis does not appear to be elevated with this strategy.