Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Jay D. Turner x
Clear All Modify Search
Full access

Jay D. Turner and Robert F. Spetzler

Restricted access

Alim P. Mitha, Jay D. Turner, Adib A. Abla, A. Giancarlo Vishteh and Robert F. Spetzler

Object

The management of intramedullary spinal cord cavernous malformations (CMs) is controversial. At Barrow Neurological Institute, the authors selectively offer surgical treatment for symptomatic spinal cord CMs. The purpose of this paper is to review the clinical outcomes in patients after resection of these lesions based on a single-center experience over a 25-year period.

Methods

The records of 80 patients who underwent resection of pathologically confirmed spinal cord CMs from January 1985 to May 2010 were analyzed retrospectively. Preoperative clinical status and imaging findings were evaluated as well as immediate and long-term postoperative outcomes.

Results

Compared with their preoperative Frankel grade, 11% of patients were worse, 83% were the same, and 6% improved immediately after surgery. At a mean follow-up interval of 5 years, 10% of patients were worse, 68% were the same, and 23% were improved compared with their preoperative status. Five percent of patients underwent reoperation for resection of a symptomatic residual or recurrent lesion. Immediate complications were encountered in 6% of patients, including CSF leakage and deep venous thrombosis. Long-term complications were encountered in 14% of patients and included kyphotic deformity, stenosis, and spinal cord tethering. A significant correlation was found between long-term outcome and anteroposterior length of the lesion (p = 0.01).

Conclusions

The resection of intramedullary spinal cord CMs can be achieved with good long-term outcomes and an acceptable risk of immediate or delayed complications.

Full access

Eduardo Martinez-del-Campo, Jay D. Turner, Leonardo Rangel-Castilla, Hector Soriano-Baron, Samuel Kalb and Nicholas Theodore

OBJECTIVE

If left untreated, occipitocervical (OC) instability may lead to serious neurological injury or death. Open internal fixation is often necessary to protect the neurovascular elements. This study reviews the etiologies for pediatric OC instability, analyzes the radiographic criteria for surgical intervention, discusses surgical fixation techniques, and evaluates long-term postoperative outcomes based on a single surgeon's experience.

METHODS

The charts of all patients < 18 years old who underwent internal OC fixation conducted by the senior author were retrospectively reviewed. Forty consecutive patients were identified for analysis. Patient demographic data, OC junction pathology, radiological diagnostic tools, surgical indications, and outcomes are reported.

RESULTS

The study population consisted of 20 boys and 20 girls, with a mean age of 7.3 years. Trauma (45% [n = 18]) was the most common cause of instability, followed by congenital etiologies (37.5% [n = 15]). The condyle-C1 interval had a diagnostic sensitivity of 100% for atlantooccipital dislocation. The median number of fixated segments was 5 (occiput–C4). Structural bone grafts were used in all patients. Postsurgical neurological improvement was seen in 88.2% (15/17) of patients with chronic myelopathy and in 25% (1/4) of patients with acute myelopathy. Preoperatively, 42.5% (17/40) of patients were neurologically intact and remained unchanged at last follow-up, 42.5% (17/40) had neurological improvement, 12.5% (5/40) remained unchanged, and 2.5% (1/40) deteriorated. All patients had successful fusion at 1-year follow-up. The complication rate was 7.5% (3/40), including 1 case of vertebral artery injury.

CONCLUSIONS

Occipitocervical fixation is safe in children and provides immediate immobilization, with excellent survival and arthrodesis rates. Of the radiographic tools evaluated, the condyle-C1 interval was the most predictive of atlantooccipital dislocation.

Full access

Jay D. Turner, Richard Williamson, Kaith K. Almefty, Peter Nakaji, Randall Porter, Victor Tse and M. Yashar S. Kalani

MicroRNAs (miRNAs) are now recognized as the primary RNAs involved in the purposeful silencing of the cell's own message. In addition to the established role of miRNAs as developmental regulators of normal cellular function, they have recently been shown to be important players in pathological states such as cancer. The authors review the literature on the role of miRNAs in the formation and propagation of gliomas and medulloblastomas, highlighting the potential of these molecules and their inhibitors as therapeutics.

Full access

Eduardo Martinez-del-Campo, Samuel Kalb, Hector Soriano-Baron, Jay D. Turner, Matthew T. Neal, Timothy Uschold and Nicholas Theodore

OBJECT

Atlantooccipital dislocation (AOD) in adults cannot be diagnosed with adequate specificity and sensitivity using only CT or plain radiography, and the spine literature offers no guidelines. In children, the most sensitive and specific radiographic measurement for the diagnosis of AOD is the CT-based occipital condyle–C1 interval (CCI). The goal of the current study was to identify the normal CCI in healthy adults and compare it with the CCI in adults with AOD to establish a highly sensitive and specific cutoff value for the neuroimaging diagnosis of AOD.

METHODS

A total of 81 patients, 59 without AOD and 22 with AOD, were included in this study. Measurements obtained from thin-slice CT scans of the craniovertebral joint to assess atlantooccipital dislocation included the CCI, condylar sum, the Wholey and Harris intervals, Powers and Sun ratios, Wackenheim line, and Lee X-lines.

RESULTS

The group of patients without AOD included 30 men (50.8%) and 29 women (49.2%) with a mean age of 42.4 ± 16 years (range 19–87 years). The group of patients with AOD included 10 men (45.5%) and 12 women (54.5%) with a mean age of 38.2 ± 9.7 years (range 20–56 years). Interrater reliabilities within a 95% CI were all greater than 0.98 for CCI measurements. A total of 1296 measurements of the CCI were made in 81 patients. The mean CCI for non-AOD patients was 0.89 ± 0.12 mm, the single largest CCI measurement was 1.4 mm, and the largest mean for either right or left CCI was 1.2 mm. The mean condylar sum was 1.8 ± 0.2 mm, and the largest condylar sum value was 2.2 mm. Linear regression with age predicted an increase in CCI of 0.001 mm/year (p < 0.05). The mean CCI in AOD patients was 3.35 ± 0.18 mm (range 1.5 mm–6.4 mm). The shortest single CCI measurements in the AOD patients were 1.1 mm and 1.2 mm. The mean condylar sum for all 22 AOD patients was 6.7 ± 2.7 mm and the shortest condylar sums were 3.0 mm. Cutoff values for AOD were set at 1.5 mm for the CCI and 3.0 mm for the condylar sum, both with a sensitivity of 1 and false-negative rate of 0. Sensitivity for the Powers, Wholey, Harris, Sun, Wackenheim, and Lee criteria were determined to be 0.55, 0.46, 0.27, 0.23, 0.41, and 0.41, respectively.

CONCLUSIONS

The CCI is shorter in adult patients as opposed to the pediatric population. The revised CCI (1.5 mm) and condylar sum (3.0 mm) cutoff values have the highest sensitivity and specificity for the diagnosis of AOD in the adult population.

Full access

Eduardo Martinez-del-Campo, Jay D. Turner, Hector Soriano-Baron, Anna G. U. S. Newcomb, Samuel Kalb and Nicholas Theodore

OBJECTIVE

The authors assessed the rate of vertebral growth, curvature, and alignment for multilevel constructs in the cervical spine after occipitocervical fixation (OCF) in pediatric patients and compared these results with those in published reports of growth in normal children.

METHODS

The authors assessed cervical spine radiographs and CT images of 18 patients who underwent occipitocervical arthrodesis. Measurements were made using postoperative and follow-up images available for 16 patients to determine cervical alignment (cervical spine alignment [CSA], C1–7 sagittal vertical axis [SVA], and C2–7 SVA) and curvature (cervical spine curvature [CSC] and C2–7 lordosis angle). Seventeen patients had postoperative and follow-up images available with which to measure vertebral body height (VBH), vertebral body width (VBW), and vertical growth percentage (VG%—that is, percentage change from postoperative to follow-up). Results for cervical spine growth were compared with normal parameters of 456 patients previously reported on in 2 studies.

RESULTS

Ten patients were girls and 8 were boys; their mean age was 6.7 ± 3.2 years. Constructs spanned occiput (Oc)–C2 (n = 2), Oc–C3 (n = 7), and Oc–C4 (n = 9). The mean duration of follow-up was 44.4 months (range 24–101 months). Comparison of postoperative to follow-up measures showed that the mean CSA increased by 1.8 ± 2.9 mm (p < 0.01); the mean C2–7 SVA and C1–7 SVA increased by 2.3 mm and 2.7 mm, respectively (p = 0.3); the mean CSC changed by −8.7° (p < 0.01) and the mean C2–7 lordosis angle changed by 2.6° (p = 0.5); and the cumulative mean VG% of the instrumented levels (C2–4) provided 51.5% of the total cervical growth (C2–7). The annual vertical growth rate was 4.4 mm/year. The VBW growth from C2–4 ranged from 13.9% to 16.6% (p < 0.001). The VBW of C-2 in instrumented patients appeared to be of a smaller diameter than that of normal patients, especially among those aged 5 to < 10 years and 10–15 years, with an increased diameter at the immediately inferior vertebral bodies compensating for the decreased width. No cervical deformation, malalignment, or detrimental clinical status was evident in any patient.

CONCLUSIONS

The craniovertebral junction and the upper cervical spine continue to present normal growth, curvature, and alignment parameters in children with OCF constructs spanning a distance as long as Oc–C4.

Full access

Adib A. Abla, Jay D. Turner, Alim P. Mitha, Gregory Lekovic and Robert F. Spetzler

Brainstem cavernous malformations (CMs) are low-flow vascular lesions in eloquent locations. Their presentation is often marked with symptomatic hemorrhages that appear to occur more frequently than hemorrhage from supratentorial cavernomas. Brainstem CMs can be removed using 1 of the 5 standard skull-base approaches: retrosigmoid, suboccipital (with or without telovelar approach), supracerebellar infratentorial, orbitozygomatic, and far lateral.

Patients being referred to a tertiary institution often have lesions that are aggressive with respect to bleeding rates. Nonetheless, the indications for surgery, in the authors' opinion, are the same for all lesions: those that are symptomatic, those that cause mass effect, or those that abut a pial surface. Patients often have relapsing and remitting courses of symptoms, with each hemorrhage causing a progressive and stepwise decline. Many patients experience new postoperative deficits, most of which are transient and resolve fully. Despite the risks associated with operating in this highly eloquent tissue, most patients have had favorable outcomes in the authors' experience. Surgical treatment of brainstem CMs protects patients from the potentially devastating effects of rehemorrhage, and the authors believe that the benefits of intervention outweigh the risks in patients with the appropriate indications.

Free access

Nikolay L. Martirosyan, Jennifer M. Eschbacher, M. Yashar S. Kalani, Jay D. Turner, Evgenii Belykh, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors.

METHODS

CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging–matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard.

RESULTS

CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3–73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas.

CONCLUSIONS

CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.

Restricted access

Corey T. Walker, S. Harrison Farber, Tyler S. Cole, David S. Xu, Jakub Godzik, Alexander C. Whiting, Cory Hartman, Randall W. Porter, Jay D. Turner and Juan Uribe

OBJECTIVE

Minimally invasive anterolateral retroperitoneal approaches for lumbar interbody arthrodesis have distinct advantages attractive to spine surgeons. Prepsoas or transpsoas trajectories can be employed with differing complication profiles because of the inherent anatomical differences encountered in each approach. The evidence comparing them remains limited because of poor quality data. Here, the authors sought to systematically review the available literature and perform a meta-analysis comparing the two techniques.

METHODS

A systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A database search was used to identify eligible studies. Prepsoas and transpsoas studies were compiled, and each study was assessed for inclusion criteria. Complication rates were recorded and compared between approach groups. Studies incorporating an analysis of postoperative subsidence and pseudarthrosis rates were also assessed and compared.

RESULTS

For the prepsoas studies, 20 studies for the complications analysis and 8 studies for the pseudarthrosis outcomes analysis were included. For the transpsoas studies, 39 studies for the complications analysis and 19 studies for the pseudarthrosis outcomes analysis were included. For the complications analysis, 1874 patients treated via the prepsoas approach and 4607 treated with the transpsoas approach were included. In the transpsoas group, there was a higher rate of transient sensory symptoms (21.7% vs 8.7%, p = 0.002), transient hip flexor weakness (19.7% vs 5.7%, p < 0.001), and permanent neurological weakness (2.8% vs 1.0%, p = 0.005). A higher rate of sympathetic nerve injury was seen in the prepsoas group (5.4% vs 0.0%, p = 0.03). Of the nonneurological complications, major vascular injury was significantly higher in the prepsoas approach (1.8% vs 0.4%, p = 0.01). There was no difference in urological or peritoneal/bowel injury, postoperative ileus, or hematomas (all p > 0.05). A higher infection rate was noted for the transpsoas group (3.1% vs 1.1%, p = 0.01). With regard to postoperative fusion outcomes, similar rates of subsidence (12.2% prepsoas vs 13.8% transpsoas, p = 0.78) and pseudarthrosis (9.9% vs 7.5%, respectively, p = 0.57) were seen between the groups at the last follow-up.

CONCLUSIONS

Complication rates vary for the prepsoas and transpsoas approaches owing to the variable retroperitoneal anatomy encountered during surgical dissection. While the risks of a lasting motor deficit and transient sensory disturbances are higher for the transpsoas approach, there is a reciprocal reduction in the risks of major vascular injury and sympathetic nerve injury. These results can facilitate informed decision-making and tailored surgical planning regarding the choice of minimally invasive anterolateral access to the spine.