Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jarrett Foster x
Clear All Modify Search
Restricted access

Ranbir Ahluwalia, Chelsea Kiely, Jarrett Foster, Stephen Gannon, Alyssa L. Wiseman, Chevis N. Shannon and Christopher M. Bonfield

OBJECTIVE

The authors sought to assess the prevalence and severity of positional posterior plagiocephaly (PPP) in the pediatric population at a tertiary care center.

METHODS

The authors conducted a retrospective review of 1429 consecutive patients aged 2 months to 18 years who presented with head trauma and a negative CT scan in 2018. The cohort was stratified by age. The cranial vault asymmetry index (CVAI) was calculated at the superior orbital rim. Asymmetry was categorized according to the following CVAI scores: mild (3.5%–7%), moderate (7%–12%), and severe (> 12%). Patients were grouped by age to assess PPP at different stages of head development: group 1, 2–5 months; group 2, 6–11 months; group 3, 12–23 months; group 4: 2–4 years; group 5, 5–8 years; group 6, 9–12 years; and group 7, 13–18 years. Patients with a history of shunted hydrocephalus, craniosynostosis, skull surgery, or radiographic evidence of intracranial trauma were excluded.

RESULTS

The overall cohort prevalence of PPP was 24.8% (354 patients). PPP prevalence was higher among younger patients from groups 1–3 (40.4%, 33.5%, and 0.8%, respectively). There was a continued decline in PPP by age in groups 4–7 (26.4%, 20%, 20%, and 10.8%, respectively). Mild cranial vault asymmetry was noted most often (78.0%, 276 patients), followed by moderate (19.5%, 69 patients) and severe (2.5%, 9 patients). There were no patients in group 6 or 7 with severe PPP.

CONCLUSIONS

PPP is prevalent in pediatric populations and most commonly presents as a case of mild asymmetry. Although there was an overall decline of PPP prevalence with increasing age, moderate asymmetry was seen in all age groups. No patients in the cohort had severe asymmetry that persisted into adolescence.

Restricted access

Jarrett Foster, Ranbir Ahluwalia, Madeleine Sherburn, Katherine Kelly, Georgina E. Sellyn, Chelsea Kiely, Alyssa L. Wiseman, Stephen Gannon, Chevis N. Shannon and Christopher M. Bonfield

OBJECTIVE

No study has established a relationship between cranial deformations and demographic factors. While the connection between the Back to Sleep campaign and cranial deformation has been outlined, considerations toward cultural or anthropological differences should also be investigated.

METHODS

The authors conducted a retrospective review of 1499 patients (age range 2 months to less than 19 years) who presented for possible trauma in 2018 and had a negative CT scan. The cranial vault asymmetry index (CVAI) and cranial index (CI) were used to evaluate potential cranial deformations. The cohort was evaluated for differences between sex, race, and ethnicity among 1) all patients and 2) patients within the clinical treatment window (2–24 months of age). Patients categorized as “other” and those for whom data were missing were excluded from analysis.

RESULTS

In the CVAI cohort with available data (n = 1499, although data were missing for each variable), 800 (56.7%) of 1411 patients were male, 1024 (79%) of 1304 patients were Caucasian, 253 (19.4%) of 1304 patients were African American, and 127 (10.3%) of 1236 patients were of Hispanic/Latin American descent. The mean CVAI values were significantly different between sex (p < 0.001) and race (p < 0.001). However, only race was associated with differences in positional posterior plagiocephaly (PPP) diagnosis (p < 0.001). There was no significant difference in CVAI measurements for ethnicity (p = 0.968). Of the 520 patients in the treatment window cohort, 307 (59%) were male. Of the 421 patients with data for race, 334 were Caucasian and 80 were African American; 47 of the 483 patients with ethnicity data were of Hispanic/Latin American descent. There were no differences between mean CVAI values for sex (p = 0.404) or ethnicity (p = 0.600). There were significant differences between the mean CVAI values for Caucasian and African American patients (p < 0.001) and rate of PPP diagnosis (p = 0.02). In the CI cohort with available data (n = 1429, although data were missing for each variable), 849 (56.8%) of 1494 patients were male, 1007 (67.4%) of 1283 were Caucasian, 248 (16.6%) of 1283 were African American, and 138 patients with ethnicity data (n = 1320) of Hispanic/Latin American descent. Within the clinical treatment window cohort with available data, 373 (59.2%) of 630 patients were male, 403 were Caucasian (81.9%), 84 were African American (17.1%), and 55 (10.5%) of 528 patients were of Hispanic/Latin American descent. The mean CI values were not significantly different between sexes (p = 0.450) in either cohort. However, there were significant differences between CI measurements for Caucasian and African American patients (p < 0.001) as well as patients of Hispanic/Latin American descent (p < 0.001) in both cohorts.

CONCLUSIONS

The authors found no significant associations between cranial deformations and sex. However, significant differences exist between Caucasian and African American patients as well as patients with Hispanic/Latin American heritage. These findings suggest cultural or anthropological influences on defining skull deformations. Further investigation into the factors contributing to these differences should be undertaken.

Restricted access

Ranbir Ahluwalia, Jarrett Foster, Earllondra Brooks, Jaims Lim, Shilin Zhao, Stephen R. Gannon, Bradley Guidry, John Wellons III and Chevis N. Shannon

OBJECTIVE

The authors aimed to determine whether the Chiari Severity Index (CSI), and other clinical variables, can be used as a predictor of postoperative outcomes for Chiari type I malformation (CM-I) using the modified Chicago Chiari Outcome Scale (mCCOS) as the postoperative measure.

METHODS

The cohort included patients 18 years of age and younger who were treated for CM-I between 2010 and 2015 who had at least 12 months of clinical and radiographic follow-up. CSI grades were assigned using preoperative clinical and neuroimaging data. Clinical, radiographic, and operative data were obtained from medical records. Kruskal-Wallis tests and Spearman correlations were conducted to assess for differences among CSI grades. Linear and ordinal regressions were conducted to evaluate predictors of the mCCOS and its components. Statistical significance was set a priori at p < 0.05.

RESULTS

A total of 65 patients were included in the final cohort. The average age at the time of surgery and the mean mCCOS score were 9.8 ± 4.9 years and 10.4 ± 1.4, respectively. There were no significant differences in the mean mCCOS scores or CSI grades. Pre- and postoperative syrinx sizes were similar across the total patient cohort with median sizes of 7.4 and 3.7 mm, respectively. After controlling for age at the time of surgery, whether duraplasty and/or arachnoid dissection was performed, CSI preoperative score did not predict postoperative mCCOS score. No clinical variable could predict total mCCOS score. When the mCCOS was broken down into 3 subcomponents (pain, non-pain, and complications), only one relationship was identified. Those patients who presented with no headache had a statistically significant decrease in their pain (neck pain, shoulder pain, or dysesthesia in the upper extremities) as measured by the pain component of the mCCOS (χ2 [2, n = 20] = 6.43, p = 0.04). All other preclinical predictors, including CSI grades, were nonsignificant in demonstrating correlations to the mCCOS subcomponents.

CONCLUSIONS

CSI grade was not found to be a marker of surgical outcome as measured by the mCCOS in this study. There were no correlations between the clinical variables and covariates investigated with the mCCOS. The lack of variation in mCCOS scores across this cohort may suggest that the mCCOS is not adequate for detecting differences in postsurgical outcomes. Further investigation is warranted to make this determination.

Restricted access

Ranbir Ahluwalia, Jarrett Foster, Madeleine M. Sherburn, Georgina E. Sellyn, Katherine A. Kelly, Muhammad Owais Abdul Ghani, Alyssa L. Wiseman, Chevis N. Shannon and Christopher M. Bonfield

OBJECTIVE

The incidence of deformational brachycephaly has risen since the “Back to Sleep” movement in 1992 by the American Academy of Pediatrics. Brachycephaly prevalence and understanding the dynamic nature of the pediatric skull have not been explored in relation to the cranial index (CI). The objective of the study was to determine the prevalence of brachycephaly, via the CI, with respect to time.

METHODS

The authors conducted a retrospective review of 1499 patients ≤ 19 years of age who presented for trauma evaluation with a negative CT scan for trauma (absence of bleed) in 2018. The CI was calculated using CT at the lateral-most point of the parietal bone (cephalic width), and the distance from the glabella to the opisthocranion (cephalic length). Brachycephaly was defined as a CI ≥ 90%.

RESULTS

The mean CI was 82.6, with an average patient age of 6.8 years. The prevalence of deformational brachycephaly steadily decreased from 27% to 4% from birth to > 2 years of life. The mean CI was statistically different between ages < 12 months, 12–24 months, and > 24 months (F[2,1496] = 124.058, p < 0.0005). A simple linear regression was calculated to predict the CI based on age; the CI was found to decrease by 0.038 each month. A significant regression equation was found (F[1,1497] = 296.846, p < 0.0005), with an R2 of 0.140.

CONCLUSIONS

The incidence of deformational brachycephaly is common in infants but decreases as the child progresses through early childhood. Clinicians can expect a significant decrease in mean CI at 12 and 24 months. Additionally, these regression models show that clinicians can expect continued improvement throughout childhood.