Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jan-Hinnerk Mehrkens x
  • All content x
Clear All Modify Search
Restricted access

Elisabeth Kaufmann, Kai Bötzel, Christian Vollmar, Jan-Hinnerk Mehrkens, and Soheyl Noachtar

OBJECTIVE

In the absence of a standard or guideline for the treatment of epilepsy patients with deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT), systematic single-center investigations are essential to establish effective approaches. Here, the authors report on the long-term results of one of the largest single-center ANT DBS cohorts.

METHODS

The outcome data of 23 consecutive patients with transventricularly implanted electrodes were retrospectively analyzed with regard to adverse events, lead placement, stimulation-related side effects, and changes in seizure frequency. Depression and quality-of-life scores were collected in a subgroup of 9 patients.

RESULTS

All but 2 patients initially underwent bilateral implantation, and 84.4% of all DBS leads were successfully located within the ANT. The mean follow-up time was 46.57 ± 23.20 months. A seizure reduction > 50% was documented in 73.9% of patients, and 34.6% achieved an Engel class I outcome. In 3 patients, clinical response was achieved by switching the electrode contact or changing from the monopolar to bipolar stimulation mode. Unilateral implantation seemed ineffective, whereas bilateral stimulation with successful ANT implantation only on one side led to a clinical response. Double stimulation with additional vagus nerve stimulation was safe. Changes in cycling mode or stimulation amplitude influenced therapy tolerability and, only to a lesser extent, seizure frequency. Side effects were rare and typically vanished by lowering the stimulation amplitude or changing the active electrode contact. Furthermore, depression and aspects of quality of life significantly improved with ANT DBS treatment.

CONCLUSIONS

The transventricular approach as well as double stimulation proved safe. The anteroventral ANT appeared to be the most efficacious stimulation site. This systematic investigation with reluctant medication changes allowed for the development of a better idea of the association between parameter changes and outcome in ANT DBS patients, but larger samples are still needed to assess the potential of bipolar stimulation and distinct cycling frequencies. Furthermore, more multifaceted and objective assessments of treatment outcome are needed to fully assess the effects of ANT DBS treatment.

Full access

Juergen Lutz, Niklas Thon, Robert Stahl, Nina Lummel, Joerg-Christian Tonn, Jennifer Linn, and Jan-Hinnerk Mehrkens

OBJECT

In this prospective study diffusion tensor imaging (DTI) was used to evaluate the influence of clinical and anatomical parameters on structural alterations within the fifth cranial nerve in patients with trigeminal neuralgia (TN) due to neurovascular compression.

METHODS

Overall, 81 patients (40 men and 41 women; mean age 60 ± 5 years) with typical TN were included who underwent microsurgical decompression. Preoperative 3.0-T high-resolution MRI and DTI were analyzed in a blinded fashion. The respective fractional anisotropy (FA) and apparent diffusion coefficient values were compared with the clinical, imaging, and intraoperative data. This study was approved by the institutional review board, and written informed consent was obtained from all patients.

RESULTS

DTI analyses revealed significantly lower FA values within the vulnerable zone of the affected trigeminal nerve compared with the contralateral side (p = 0.05). The DTI analyses also included 3 patients without clear evidence of neurovascular conflict on preoperative MRI. No differences were seen between arterial and venous compression. Lower FA values were found 5 months after symptom onset; however, no correlation was found with the duration of symptoms or severity of compression.

CONCLUSIONS

DTI analysis allows the quantification of structural alterations, even in those patients without any discernible neurovascular contact on MRI. Moreover, our findings support the hypothesis that both the arteries and veins can cause structural alterations that lead to TN. These aspects can be useful for making treatment decisions.