Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Jamie E. Clarke x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Jamie E. Clarke, Evan Luther, Brooke Oppenhuizen, Jessica D. Leuchter, John Ragheb, Toba N. Niazi, and Shelly Wang


Infantile intracranial aneurysms are exceedingly rare. The goal of this study was to evaluate an institutional case series of infantile intracranial aneurysms, as well as those reported in the contemporary literature, to determine their demographics, presentation, management, and long-term outcome.


A comprehensive literature review from 1980 to 2020 was performed to identify individual cases of intracranial aneurysms in the infantile population ≤ 2 years of age. Additional cases from the authors’ institution were identified during the same time period. An individual participant data meta-analysis (IPDMA) was performed, abiding by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Patient demographic, radiographic, and clinical information was obtained. Descriptive statistical data were recorded, and multivariate logistic regression analyses were performed.


Patient data were obtained for 133 patients from 87 articles in the literature. Ten additional patients at the authors’ institution were also identified, for a total of 143 patients included in the IPDMA. The majority (72.7%) of this cohort consisted of idiopathic aneurysms, while 13.3% were posttraumatic pseudoaneurysms, 9.8% were infectious mycotic aneurysms, and 4.2% were aneurysms associated with a systemic connective tissue disorder or vasculitis. The mean age at presentation was 6.6 months. The majority of infants (97.9%) harbored only 1 aneurysm, and hemorrhage was the most common presenting feature (78.3%). The mean aneurysm size was 14.4 mm, and giant aneurysms ≥ 25 mm comprised 12.9% of the cohort. Most aneurysms occurred in the anterior circulation (80.9%), with the middle cerebral artery (MCA) being the most commonly affected vessel (51.8%). Management strategies included open surgical aneurysm ligation (54.0%), endovascular treatment (35.0%), surgical decompression without aneurysm treatment (4.4%), and medical supportive management only (13.9%). Surgical aneurysm ligation was more commonly performed for MCA and anterior cerebral artery aneurysms (p = 0.004 and p = 0.015, respectively), while endovascular techniques were favored for basilar artery aneurysms (p = 0.042). The mean follow-up period was 29.9 months; 12.4% of the cohort died, and 67.0% had a favorable outcome (Glasgow Outcome Scale score of 5).


This study is, to the authors’ knowledge, the largest analysis of infantile intracranial aneurysms to date. The majority were idiopathic aneurysms involving the anterior circulation. Surgical and endovascular techniques yielded equally favorable outcomes in this cohort. Long-term outcomes in the infantile population compared favorably to outcomes in adults.

Restricted access

Victor M. Lu, Jessica D. Leuchter, Jamie E. Clarke, Evan M. Luther, Shelly Wang, and Toba N. Niazi


The effect of congenital cardiac status on endoscopic third ventriculostomy (ETV) and ventriculoperitoneal shunt (VPS) failure in hydrocephalic infants is unknown. Because cardiac status in infants can impact central venous pressure (CVP), it is possible that congenital heart disease (CHD) and congenital cardiac anomalies may render these cerebrospinal fluid diversion interventions more susceptible to failure. Correspondingly, the aim of this study was to determine how CHD and congenital cardiac anomalies may impact the failure of these initial interventions.


A retrospective review of the Nationwide Inpatient Sample (NIS) database was conducted. Infants (aged < 1 year) with known congenital cardiac status managed with either ETV or VPS were included. Quantitative data were compared using either parametric or nonparametric methods, and failure rates were modeled using univariable and multivariable regression analyses.


A total of 18,763 infants treated with ETV or VPS for hydrocephalus were identified in our search, with ETV used to treat 7657 (41%) patients and VPS used to treat 11,106 (59%). There were 6722 (36%) patients who presented with CHD at admission, and a total of 25 unique congenital cardiac anomalies were detected across the cohort. Overall, the most common anomaly was patent ductus arteriosus (PDA) in 4990 (27%) patients, followed by atrial septal defect (ASD) in 2437 (13%) patients and pulmonary hypertension in 810 (4%) patients. With respect to initial intervention failure, 3869 (21%) patients required repeat surgical intervention during admission. This was significantly more common in the ETV group than the VPS group (36% vs 10%, p < 0.01). In both the ETV and VPS groups, CHD (p < 0.01), including all congenital cardiac anomalies, was an independent and significant predictor of failure. ASD (p < 0.01) and PDA (p < 0.01) both significantly predicted ETV failure, and PDA (p < 0.01) and pulmonary hypertension (p = 0.02) both significantly predicted VPS failure.


These results indicate that congenital cardiac status predicts ETV and VPS failure in patients with infantile hydrocephalus. The authors hypothesized that this finding was primarily due to changes in CVP; however, this may not be completely universal across both interventions and all congenital cardiac anomalies. Future studies about optimization of congenital cardiac status with ETV and VPS are required to understand the practical significance of these findings.

Full access

Grant W. Mallory, Grigoriy Arutyunyan, Meghan E. Murphy, Kathryn M. Van Abel, Elvis Francois, Nicholas M. Wetjen, Jeremy L. Fogelson, Erin K. O'Brien, Michelle J. Clarke, Laurence J. Eckel, and Jamie J. Van Gompel


Endoscopic approaches to the anterior craniocervical junction are increasing in frequency. Choice of oral versus endoscopic endonasal approach to the odontoid often depends on the relationship of the C1–2 complex to the hard palate. However, it is not known how this relevant anatomy changes with age. We hypothesize that there is a dynamic relationship of C-2 and the hard palate, which changes with age, and potentially affects the choice of surgical approach. The aim of this study was to characterize the relationship of C-2 relative to the hard palate with respect to age and sex.


Emergency department billing and trauma records from 2008 to 2014 were reviewed for patients of all ages who underwent cervical or maxillofacial CT as part of a trauma evaluation for closed head injury. Patients who had a CT scan that allowed adequate visualization of the hard palate, opisthion, and upper cervical spine (C-1 and C-2) were included. Patients who had cervical or displaced facial/skull base fractures, a history of rheumatoid arthritis, or craniofacial anomalies were excluded. The distance from McGregor's palatooccipital line to the midpoint of the inferior endplate of C-2 (McL–C2) was measured on midsagittal CT scans. Patients were grouped by decile of age and by sex. A 1-way ANOVA was performed with each respective grouping.


Ultimately, 483 patients (29% female) were included. The mean age was 46 ± 24 years. The majority of patients studied were in the 2nd through 8th decades of life (85%). Significant variation was found between McL–C2 and decile of age (p < 0.001) and sex (p < 0.001). The mean McL–C2 was 27 mm in the 1st decade of life compared with the population mean of 37 mm. The mean McL–C2 was also noted to be smaller in females (mean difference 4.8 mm, p < 0.0001). Both decile of age (p = 0.0009) and sex (p < 0.0001) were independently correlated with McL–C2 on multivariate analysis.


The relationship of C-2 and the hard palate significantly varies with respect to age and sex, descending relative to the hard palate a full centimeter on average in adulthood. These findings may have relevance in determining optimal surgical approaches for addressing pathology involving the anterior craniocervical junction.

Free access

Kathryn M. Van Abel, Grant W. Mallory, Jan L. Kasperbauer, M.D., Eric J. Moore, Daniel L. Price, Erin K. O’Brien, Kerry D. Olsen, William E. Krauss, Michelle J. Clarke, Mark E. Jentoft, and Jamie J. Van Gompel


Swallowing dysfunction is common following transoral (TO) odontoidectomy. Preliminary experience with newer endoscopic transnasal (TN) approaches suggests that dysphagia may be reduced with this alternative. However, the reasons for this are unclear. The authors hypothesized that the TN approach results in less disruption of the pharyngeal plexus and anatomical structures associated with swallowing. The authors investigate the histological and gross surgical anatomical relationship between pharyngeal plexus innervation of the upper aerodigestive tract and the surgical approaches used (TN and TO). They also review the TN literature to evaluate swallowing outcomes following this approach.


Seven cadaveric specimens were used for histological (n = 3) and gross anatomical (n = 4) examination of the pharyngeal plexus with the TO and TN surgical approaches. Particular attention was given to identifying the location of cranial nerves (CNs) IX and X and the sympathetic chain and their contributions to the pharyngeal plexus. S100 staining was performed to assess for the presence of neural tissue in proximity to the midline, and fiber density counts were performed within 1 cm of midline. The relationship between the pharyngeal plexus, clivus, and upper cervical spine (C1-3) was defined.


Histological analysis revealed the presence of pharyngeal plexus fibers in the midline and a significant reduction in paramedian fiber density from C-2 to the lower clivus (p < 0.001). None of these paramedian fibers, however, could be visualized with gross inspection or layer-by-layer dissection. Laterally based primary pharyngeal plexus nerves were identified by tracing their origins from CNs IX and X and the sympathetic chain at the skull base and following them to the pharyngeal musculature. In addition, the authors found 15 studies presenting 52 patients undergoing TN odontoidectomy. Of these patients, only 48 had been swallowing preoperatively. When looking only at this population, 83% (40 of 48) were swallowing by Day 3 and 92% (44 of 48) were swallowing by Day 7.


Despite the midline approach, both TO and TN approaches may injure a portion of the pharyngeal plexus. By limiting the TN incision to above the palatal plane, the surgeon avoids the high-density neural plexus found in the oropharyngeal wall and limits injury to oropharyngeal musculature involved in swallowing. This may explain the decreased incidence of postoperative dysphagia seen in TN approaches. However, further clinical investigation is warranted.