Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: James B. Yu x
Clear All Modify Search
Restricted access

Charu Singh, Jack M. Qian, James B. Yu and Veronica L. Chiang

OBJECTIVE

Concurrent use of anti-PD-1 therapies with stereotactic radiosurgery (SRS) have been shown to be beneficial for survival and local lesional control in melanoma patients with brain metastases. It is not known, however, if immunotherapy (IT) confers the same outcome advantage in lung cancer patients with brain metastases treated with SRS.

METHODS

The authors retrospectively reviewed 85 non–small cell lung cancer (NSCLC) patients with brain metastases who were treated with SRS between January 2006 and December 2016. Thirty-nine PD-L1 antibody–positive patients received anti-PD-1 therapy with SRS (IT group) and 46 patients received chemotherapy (CT) with SRS (CT group). Results were obtained using chi-square, Kaplan-Meier, and Mann-Whitney U tests and Cox regression analyses.

RESULTS

Median survival following first radiosurgical treatment in the whole study group was 11.6 months (95% CI 8–15.5 months). Median survival times in the IT group and CT group were 10 months (95% CI 8.3–13.2 months) and 11.6 months (95% CI 7.7–15.6 months), respectively (p = 0.23). A Karnofsky Performance Status (KPS) score < 80 (p = 0.001) and lung-specific molecular marker Graded Prognostic Assessment (lungmol GPA) score < 1.5 (p = 0.02) were found to be predictive of worse survival.

Maximal percent lesional shrinkage and time to maximal shrinkage were not significantly different between the CT and IT groups. Of the lesions for which a complete response occurred, 94.8% had pre-SRS volumes < 500 mm3. The amount of lesion shrinkage and time to maximal shrinkage were not different between the IT and CT groups for lesions with volumes < 500 mm3. However, in lesions with volume > 500 mm3, 90% of lesions shrank after radiosurgery in the IT group compared with 47.8% in the CT group (p = 0.001). Median times to initial response and times to maximal shrinkage were faster in the IT group than in the CT group: initial response 49 days (95% CI 33.7–64.3 days) versus 84 days (95% CI 28.1–140 days), p = 0.001; maximal response 105 days (95% CI 59–150 days) versus 182 days (95% CI 119.6–244 days), p = 0.12.

CONCLUSIONS

Unlike patients with melanoma, patients with NSCLC with brain metastases undergoing SRS showed no significant benefit—either in terms of survival or total amount of lesional response—when anti-PD-1 therapies were used. However, in lesions with volume > 500 mm3, combining SRS with IT may result in a faster and better volumetric response which may be particularly beneficial in lesions causing mass effect or located in neurologically critical locations.

Full access

Rovel J. Colaco, Pierre Martin, Harriet M. Kluger, James B. Yu and Veronica L. Chiang

OBJECT

Radiation necrosis (RN), or its imaging equivalent, treatment-related imaging changes (TRIC), is an inflammatory reaction to high-dose radiation in the brain. The authors sought to investigate the hypothesis that immunotherapy increases the risk of developing RN/TRIC after stereotactic Gamma Knife (GK) radiosurgery for brain metastases.

METHODS

A total of 180 patients who underwent GK surgery for brain metastases between 2006 and 2012 were studied. The systemic therapy they received was classified as cytotoxic chemotherapy (CT), targeted therapy (TT), or immunotherapy (IT). The timing of systemic therapy in relation to GK treatment was also recorded. Logistic regression was used to calculate the odds of developing RN according to type of systemic therapy received.

RESULTS

The median follow-up time was 11.7 months. Of 180 patients, 39 (21.7%) developed RN/TRIC. RN/TRIC rates were 37.5% (12 of 32) in patients who received IT alone, 16.9% (14 of 83) in those who received CT only, and 25.0% (5 of 20) in those who received TT only. Median overall survival was significantly longer in patients who developed RN/TRIC (23.7 vs 9.9 months, respectively). The RN/TRIC rate was increased significantly in patients who received IT alone (OR 2.40 [95% CI 1.06–5.44]; p = 0.03), whereas receipt of any CT was associated with a lower risk of RN/TRIC (OR 0.38 [95% CI 0.18–0.78]; p = 0.01). The timing of development of RN/TRIC was not different between patients who received IT and those who received CT.

CONCLUSIONS

Patients who receive IT alone may have an increased rate of RN/TRIC compared with those who receive CT or TT alone after stereotactic radiosurgery, whereas receiving any CT may in fact be protective against RN/TRIC. As the use of immunotherapies increases, the rate of RN/TRIC may be expected to increase compared with rates in the chemotherapy era.

Restricted access

James W. Simpkins, Gopal Rajakumar, Yu-Qi Zhang, Christopher E. Simpkins, David Greenwald, Chun J. Yu, Nicholas Bodor and Arthur L. Day

✓ The present study was undertaken to determine if estrogens protect female rats from the neurodegenerative effects of middle cerebral artery (MCA) occlusion. The rats were ovariectomized and 7 or 8 days later various estrogen preparations were administered before or after MCA occlusion. Pretreatment with 17β-estradiol (17β-E2) or a brain-targeted 17β-E2 chemical delivery system (CDS) decreased mortality from 65% in ovariectomized rats to 22% in 17β-E2—treated and 16% in 17β-E2 CDS—treated rats. This marked reduction in mortality was accompanied by a reduction in the ischemic area of the brain from 25.6 ± 5.7% in the ovariectomized rats to 9.8 ± 4% and 9.1 ± 4.2% in the 17β-E2—implanted and the 17β-E2 CDS—treated rats, respectively. Similarly, pretreatment with the presumed inactive estrogen, 17α-estradiol, reduced mortality from 36 to 0% and reduced the ischemic area by 55 to 81%. When administered 40 or 90 minutes after MCA occlusion, 17β-E2 CDS reduced the area of ischemia by 45 to 90% or 31%, respectively. In summary, the present study provides the first evidence that estrogens exert neuroprotective effects in an animal model of ischemia and suggests that estrogens may be a useful therapy to protect neurons against the neurodegenerative effects of stroke.

Restricted access

Harold L. Asch, P. Jeffrey Lewis, Douglas B. Moreland, James G. Egnatchik, Young J. Yu, David E. Clabeaux and Andrew H. Hyland

Object. The authors assessed the efficacy and outcomes of lumbar microdiscectomy performed on an outpatient basis by administering six questionnaires before and at five time points after surgery. The results were compared with those reported in literature in which the success rates vary between 70% and 80% and in excess of 90%. The authors use the methodology and data derived from their study to evaluate critically the relevance of these two categories of success rates.

Methods. This is a prospective study of 212 consecutive, eligible patients who underwent outpatient microscopic discectomy for the treatment of lumbar disc herniation; no previous lumbar lesion had been treated. Data were collected from questionnaires given to the patients before and at five time points after surgery, including at a variable final follow-up examination (mean 2 years postoperatively). Data were collated and analyzed independently by individuals other than the operating surgeons.

In both bi- and multivariate analyses, only two preoperative parameters were prognostically significant. The first factor was Workers' Compensation status, which had a negative effect on outcome. The second factor was patient age, which also had a negative effect and was linear with increasing age between 25 years and 56 years—that is, the ages most commonly encountered in cases of herniated disc. Successful outcome rates were as follows: leg pain relief according to a visual analog scale (VAS), 80%; back pain relief (VAS), 77%; Oswestry Low Back Disability Index, 78%; satisfaction with the results of surgery, 76%; return to normal daily activities, 65%; and return to work, 61%.

Conclusions. The findings of this study support the evidence that lumbar microdiscectomy performed on an outpatient basis is a very safe and effective means of treating sciatic pain due to disc herniation. The authors believe that their outcome success rates of 75 to 80% are more realistic than those of 90% or more found in some reports.

Full access

Jonathan P. S. Knisely, James B. Yu, Jaclyn Flanigan, Mario Sznol, Harriet M. Kluger and Veronica L. S. Chiang

Object

A prospectively collected cohort of 77 patients who underwent definitive radiosurgery between 2002 and 2010 for melanoma brain metastases was retrospectively reviewed to assess the impact of ipilimumab use and other clinical variables on survival.

Methods

The authors conducted an institutional review board–approved chart review to assess patient age at the time of brain metastasis diagnosis, sex, primary disease location, initial radiosurgery date, number of metastases treated, performance status, systemic therapy and ipilimumab history, whole-brain radiation therapy (WBRT) use, follow-up duration, and survival at the last follow-up. The Diagnosis-Specific Graded Prognostic Assessment (DSGPA) score was calculated for each patient based on performance status and the number of brain metastases treated.

Results

Thirty-five percent of the patients received ipilimumab. The median survival in this group was 21.3 months, as compared with 4.9 months in patients who did not receive ipilimumab. The 2-year survival rate was 47.2% in the ipilimumab group compared with 19.7% in the nonipilimumab group. The DS-GPA score was the most significant predictor of overall survival, and ipilimumab therapy was also independently associated with an improvement in the hazard for death (p = 0.03).

Conclusions

The survival of patients with melanoma brain metastases managed with ipilimumab and definitive radiosurgery can exceed the commonly anticipated 4–6 months. Using ipilimumab in a supportive treatment paradigm of radiosurgery for brain oligometastases was associated with an increased median survival from 4.9 to 21.3 months, with a 2-year survival rate of 19.7% versus 47.2%. This association between ipilimumab and prolonged survival remains significant even after adjustment for performance status without an increased need for salvage WBRT.

Full access

Henry S. Park, Elyn H. Wang, Charles E. Rutter, Christopher D. Corso, Veronica L. Chiang and James B. Yu

OBJECT

Single-fraction stereotactic radiosurgery (SRS) is a crucial component in the management of limited brain metastases from non-small cell lung cancer (NSCLC). Intracranial SRS has traditionally been delivered using a frame-based Gamma Knife (GK) platform, but stereotactic modifications to the linear accelerator (LINAC) have made an alternative approach possible. In the absence of definitive prospective trials comparing the efficacy and toxicities of treatment between the 2 techniques, nonclinical factors (such as technology accessibility, costs, and efficiency) may play a larger role in determining which radiosurgery system a facility may choose to install. To the authors’ knowledge, this study is the first to investigate national patterns of GK SRS versus LINAC SRS use and to determine which factors may be associated with the adoption of these radiosurgery systems.

METHODS

The National Cancer Data Base was used to identify patients > 18 years old with NSCLC who were treated with single-fraction SRS to the brain between 2003 and 2011. Patients who received “SRS not otherwise specified” or who did not receive a radiotherapy dose within the range of 12–24 Gy were excluded to reduce the potential for misclassification. The chi-square test, t-test, and multivariable logistic regression analysis were used to compare potential demographic, clinicopathologic, and health care system predictors of GK versus LINAC SRS use, when appropriate.

RESULTS

This study included 1780 patients, among whom 1371 (77.0%) received GK SRS and 409 (23.0%) underwent LINAC SRS. Over time, the proportion of patients undergoing LINAC SRS steadily increased, from 3.2% in 2003 to 30.8% in 2011 (p < 0.001). LINAC SRS was adopted more rapidly by community versus academic facilities (overall 29.2% vs 17.2%, p < 0.001). On multivariable analysis, 4 independent predictors of increased LINAC SRS use emerged, including year of diagnosis in 2008–2011 versus 2003–2007 (adjusted OR [AOR] 2.04, 95% CI 1.52–2.73, p < 0.001), community versus academic facility type (AOR 2.04, 95% CI 1.60–2.60, p < 0.001), non-West versus West geographic location (AOR 4.50, 95% CI 2.87–7.09, p < 0.001), and distance from cancer reporting facility of < 20 versus ≥ 20 miles (AOR 1.57, 95% CI 1.21–2.04, p = 0.001).

CONCLUSIONS

GK remains the most commonly used single-fraction SRS modality for NSCLC brain metastases in the US. However, LINAC-based SRS has been rapidly disseminating in the past decade, especially in the community setting. Wide geographic variation persists in the distribution of GK and LINAC SRS cases. Further comparative effectiveness research will be needed to evaluate the impact of these shifts on SRS-related toxicities, local control, and survival, as well as treatment costs and efficiency.

Free access

Nataniel H. Lester-Coll, Arie P. Dosoretz, William J. Magnuson, Maxwell S. Laurans, Veronica L. Chiang and James B. Yu

OBJECTIVE

The JLGK0901 study found that stereotactic radiosurgery (SRS) is a safe and effective treatment option for treating up to 10 brain metastases. The purpose of this study is to determine the cost-effectiveness of treating up to 10 brain metastases with SRS, whole-brain radiation therapy (WBRT), or SRS and immediate WBRT (SRS+WBRT).

METHODS

A Markov model was developed to evaluate the cost effectiveness of SRS, WBRT, and SRS+WBRT in patients with 1 or 2–10 brain metastases. Transition probabilities were derived from the JLGK0901 study and modified according to the recurrence rates observed in the Radiation Therapy Oncology Group (RTOG) 9508 and European Organization for Research and Treatment of Cancer (EORTC) 22952–26001 studies to simulate the outcomes for patients who receive WBRT. Costs are based on 2015 Medicare reimbursements. Health state utilities were prospectively collected using the Standard Gamble method. End points included cost, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). The willingness-to-pay (WTP) threshold was $100,000 per QALY. One-way and probabilistic sensitivity analyses explored uncertainty with regard to the model assumptions.

RESULTS

In patients with 1 brain metastasis, the ICERs for SRS versus WBRT, SRS versus SRS+WBRT, and SRS+WBRT versus WBRT were $117,418, $51,348, and $746,997 per QALY gained, respectively. In patients with 2–10 brain metastases, the ICERs were $123,256, $58,903, and $821,042 per QALY gained, respectively. On the sensitivity analyses, the model was sensitive to the cost of SRS and the utilities associated with stable post-SRS and post-WBRT states. In patients with 2–10 brain metastases, SRS versus WBRT becomes cost-effective if the cost of SRS is reduced by $3512. SRS versus WBRT was also cost effective at a WTP of $200,000 per QALY on the probabilistic sensitivity analysis.

CONCLUSIONS

The most cost-effective strategy for patients with up to 10 brain metastases is SRS alone relative to SRS+WBRT. SRS alone may also be cost-effective relative to WBRT alone, but this depends on WTP, the cost of SRS, and patient preferences.

Free access

Benjamin H. Kann, James B. Yu, John M. Stahl, James E. Bond, Christopher Loiselle, Veronica L. Chiang, Ranjit S. Bindra, Jason L. Gerrard and David J. Carlson

OBJECTIVE

Functional Gamma Knife radiosurgery (GKRS) procedures have been increasingly used for treating patients with tremor, trigeminal neuralgia (TN), and refractory obsessive-compulsive disorder. Although its rates of toxicity are low, GKRS has been associated with some, if low, risks for serious sequelae, including hemiparesis and even death. Anecdotal reports have suggested that even with a standardized prescription dose, rates of functional GKRS toxicity increase after replacement of an old cobalt-60 source with a new source. Dose rate changes over the course of the useful lifespan of cobalt-60 are not routinely considered in the study of patients treated with functional GKRS, but these changes may be associated with significant variation in the biologically effective dose (BED) delivered to neural tissue.

METHODS

The authors constructed a linear-quadratic model of BED in functional GKRS with a dose-protraction factor to correct for intrafraction DNA-damage repair and used standard single-fraction doses for trigeminal nerve ablation for TN (85 Gy), thalamotomy for tremor (130 Gy), and capsulotomy for obsessive-compulsive disorder (180 Gy). Dose rate and treatment time for functional GKRS involving 4-mm collimators were derived from calibrations in the authors' department and from the cobalt-60 decay rate. Biologically plausible values for the ratio for radiosensitivity to fraction size (α/β) and double-strand break (DSB) DNA repair halftimes (τ) were estimated from published experimental data. The biphasic characteristics of DSB repair in normal tissue were accounted for in deriving an effective τ1 halftime (fast repair) and τ2 halftime (slow repair). A sensitivity analysis was performed with a range of plausible parameter values.

RESULTS

After replacement of the cobalt-60 source, the functional GKRS dose rate rose from 1.48 to 2.99 Gy/min, treatment time fell, and estimated BED increased. Assuming the most biologically plausible parameters, source replacement resulted in an immediate relative BED increase of 11.7% for GKRS-based TN management with 85 Gy, 15.6% for thalamotomy with 130 Gy, and 18.6% for capsulotomy with 180 Gy. Over the course of the 63-month lifespan of the cobalt-60 source, BED decreased annually by 2.2% for TN management, 3.0% for thalamotomy, and 3.5% for capsulotomy.

CONCLUSIONS

Use of a new cobalt-60 source after replacement of an old source substantially increases the predicted BED for functional GKRS treatments for the same physical dose prescription. Source age, dose rate, and treatment time should be considered in the study of outcomes after high-dose functional GKRS treatments. Animal and clinical studies are needed to determine how this potential change in BED contributes to GKRS toxicity and whether technical adjustments should be made to reduce dose rates or prescription doses with newer cobalt-60 sources.

Full access

Paul Porensky and E. Antonio Chiocca

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Gene H. Barnett, David Mathieu, Veronica Chiang, James B. Yu, Judith Hess, Heyoung L. McBride, Norissa Honea, Peter Nakaji, John Y. K. Lee, Gazanfar Rahmathulla, Wendi A. Evanoff, Michelle Alonso-Basanta and L. Dade Lunsford

OBJECT

Posterior fossa meningiomas represent a common yet challenging clinical entity. They are often associated with neurovascular structures and adjacent to the brainstem. Resection can be undertaken for posterior fossa meningiomas, but residual or recurrent tumor is frequent. Stereotactic radiosurgery (SRS) has been used to treat meningiomas, and this study evaluates the outcome of this approach for those located in the posterior fossa.

METHODS

At 7 medical centers participating in the North American Gamma Knife Consortium, 675 patients undergoing SRS for a posterior fossa meningioma were identified, and clinical and radiological data were obtained for these cases. Females outnumbered males at a ratio of 3.8 to 1, and the median patient age was 57.6 years (range 12–89 years). Prior resection was performed in 43.3% of the patient sample. The mean tumor volume was 6.5 cm3, and a median margin dose of 13.6 Gy (range 8–40 Gy) was delivered to the tumor.

RESULTS

At a mean follow-up of 60.1 months, tumor control was achieved in 91.2% of cases. Actuarial tumor control was 95%, 92%, and 81% at 3, 5, and 10 years after radiosurgery. Factors predictive of tumor progression included age greater than 65 years (hazard ratio [HR] 2.36, 95% CI 1.30–4.29, p = 0.005), prior history of radiotherapy (HR 5.19, 95% CI 1.69–15.94, p = 0.004), and increasing tumor volume (HR 1.05, 95% CI 1.01–1.08, p = 0.005). Clinical stability or improvement was achieved in 92.3% of patients. Increasing tumor volume (odds ratio [OR] 1.06, 95% CI 1.01–1.10, p = 0.009) and clival, petrous, or cerebellopontine angle location as compared with petroclival, tentorial, and foramen magnum location (OR 1.95, 95% CI 1.05–3.65, p = 0.036) were predictive of neurological decline after radiosurgery. After radiosurgery, ventriculoperitoneal shunt placement, resection, and radiation therapy were performed in 1.6%, 3.6%, and 1.5%, respectively.

CONCLUSIONS

Stereotactic radiosurgery affords a high rate of tumor control and neurological preservation for patients with posterior fossa meningiomas. Those with a smaller tumor volume and no prior radiation therapy were more likely to have a favorable response after radiosurgery. Rarely, additional procedures may be required for hydrocephalus or tumor progression.