Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Jae Jun Yang x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Ho Jun Yi, Jae Hoon Sung, Dong Hoon Lee, Seung Ho Yang, and Jae Taek Hong

OBJECTIVE

Volume perfusion CT (VPCT) with added CT angiography (CTA)–like reconstruction from VPCT source data (VPCTA) can reveal multiple intracranial parameters. The authors examined the usefulness of VPCTA in terms of reducing the in-hospital time delay for mechanical thrombectomy.

METHODS

A total of 180 patients who underwent mechanical thrombectomy at the authors’ institution between January 2014 and March 2017 were divided into 2 groups: a CTA-based thrombectomy decision group (group 1: CTA) and a VPCTA-based decision group (group 2: VPCTA). Multiple time interval categories (from symptom onset to groin puncture, from hospital arrival to groin puncture, procedure time, from symptom onset to reperfusion, and from hospital arrival to reperfusion) were reviewed. All patients underwent clinical assessment with the National Institutes of Health Stroke Scale score and the modified Rankin Scale, and radiological results were evaluated by the Thrombolysis in Cerebral Infarction score.

RESULTS

In all of the time interval categories except for procedure time, the VPCTA group showed a significantly shorter in-hospital time delay during the prethrombectomy period than did the CTA group. The 3-month modified Rankin Scale score was significantly lower in the VPCTA group (2.8) compared with the CTA group (3.5) (p = 0.003). However, there were no statistically significant differences between the 2 groups in the other clinical and radiological outcomes.

CONCLUSIONS

Compared with CTA, VPCTA significantly reduced the in-hospital time delay during the prethrombectomy period.

Restricted access

Dong-Ho Lee, Suk-Kyu Lee, Jae Hwan Cho, Chang Ju Hwang, Choon Sung Lee, Jae Jun Yang, Kook Jong Kim, Jae Hong Park, and Sehan Park

OBJECTIVE

Anterior cervical discectomy and fusion (ACDF) provides a limited workspace, and surgeons often need to access the posterior aspect of the vertebral body to achieve sufficient decompression. Oblique resection of the posterior endplate (trumpet-shaped decompression [TSD]) widens the workspace, enabling removal of lesions behind the vertebral body. This study was conducted to evaluate the efficacy and safety of oblique posterior endplate resection for wider decompression.

METHODS

In this retrospective study, 227 patients who underwent ACDF for the treatment of cervical myelopathy or radiculopathy caused by spondylosis or ossification of the posterior longitudinal ligament and were followed up for ≥ 1 year were included. Patient characteristics, fusion rates, subsidence, and patient-reported outcome measures, including the neck pain visual analog scale (VAS) score, arm pain VAS score, and Neck Disability Index (NDI), were assessed. Patients who underwent TSD during ACDF (TSD group) and those who underwent surgery without TSD (non-TSD group) were compared.

RESULTS

Fifty-seven patients (25.1%) were included in the TSD group and 170 patients (74.9%) in the non-TSD group. In the TSD group, 28.2% ± 5.5% of the endplate was resected, and 26.0% ± 6.1% of the region behind the vertebral body could be visualized via the TSD technique. The resection angle was 26.9° ± 5.9°. The fusion rate assessed on the basis of interspinous motion, intragraft bone bridging, and extragraft bone bridging did not significantly differ between the two groups. Furthermore, there were no significant intergroup differences in subsidence. The patient-reported outcome measures at the 1-year follow-up were also not significantly different between the groups.

CONCLUSIONS

TSD widened the workspace during ACDF, and 26% of the region posterior to the vertebral body could be accessed using this technique. The construct stability was not adversely affected by TSD as demonstrated by the similar fusion and subsidence rates among patients who underwent TSD and those who did not. Therefore, TSD can be safely applied during ACDF when compressive lesions extend behind the vertebral body and are not limited to the disc space, enabling adequate decompression without disrupting the construct stability.

Free access

Sehan Park, Jae Woo Park, Jin Hoon Park, Choon Sung Lee, Dong-Ho Lee, Chang Ju Hwang, Jae Jun Yang, and Jae Hwan Cho

OBJECTIVE

Metastatic epidural spinal cord compression (MESCC) causes neurological deficits that may hinder ambulation. Understanding the prognostic factors associated with increased neurological recovery and regaining ambulatory functions is important for surgical planning in MESCC patients with neurological deficits. The present study was conducted to elucidate prognostic factors of neurological recovery in MESCC patients.

METHODS

A total of 192 patients who had surgery for MESCC due to preoperative neurological deficits were reviewed. A motor recovery rate ≥ 50% and ambulatory function restoration were defined as the primary favorable endpoints. Factors associated with a motor recovery rate ≥ 50%, regaining ambulatory function, and patient survival were analyzed.

RESULTS

About one-half (48.4%) of the patients had a motor recovery rate ≥ 50%, and 24.4% of patients who were not able to walk due to MESCC before the surgery were able to walk after the operation. The factors “involvement of the thoracic spine” (p = 0.015) and “delayed operation” (p = 0.041) were associated with poor neurological recovery. Low preoperative muscle function grade was associated with a low likelihood of regaining ambulatory functions (p = 0.002). Furthermore, performing the operation ≥ 72 hours after the onset of the neurological deficit significantly decreased the likelihood of regaining ambulatory functions (p = 0.020). Postoperative ambulatory function significantly improved patient survival (p = 0.048).

CONCLUSIONS

Delayed operation and the involvement of the thoracic spine were poor prognostic factors for neurological recovery after MESCC surgery. Furthermore, a more severe preoperative neurological deficit was associated with a lesser likelihood of regaining ambulatory functions postoperatively. Earlier detection of motor weaknesses and expeditious surgical interventions are necessary, not only to improve patient functional status and quality of life but also to enhance survival.

Restricted access

Yang Kwon, Jun Seok Bae, Jae Myung Kim, Do Hee Lee, Soon Young Kim, Jae Sung Ahn, Jeong Hoon Kim, Chang Jin Kim, Byung Duk Kwun, and Jung Kyo Lee

✓ Tumors involving the optic nerve (optic glioma, optic nerve sheath meningioma) are benign but difficult to treat. Gamma knife surgery (GKS) may be a useful treatment. The authors present data obtained in three such cases and record the effects of GKS.

Restricted access

Ho Jun Yi, Jung Eun Lee, Dong Hoon Lee, Young Il Kim, Chul Bum Cho, Il Sup Kim, Jae Hoon Sung, and Seung Ho Yang

OBJECTIVE

Perilesional edema is a predominant mechanism underlying secondary brain injury after traumatic brain injury (TBI). Perilesional edema is characterized by inflammation, production of proinflammatory cytokines, and migration of peripheral immune cells into the brain. The nucleotide-binding domain and leucine-rich repeat (NLR) family pyrin domain–containing 3 protein (NLRP3) is a key component of secondary injury. Pioglitazone regulates NLRP3 and other inflammatory cytokines. In the present study, the role of NLRP3 and the pharmacological effects of pioglitazone were investigated in animal TBI models.

METHODS

Brain contusion was induced in a weight drop model involving 3 groups of mice: C57 BL/6 (sham group), NLRP3 knockout (K/O group), and pioglitazone-treated mice (treatment group). The percentage of brain water content of the 3 groups of mice was compared over a period of time. Western blot, immunohistochemistry, and immunofluorescence analyses were conducted to investigate NLRP3-related inflammasomes and the effects of pioglitazone in the TBI models.

RESULTS

Brain edema was the highest on day 3 after TBI in the sham group. Brain edema in both the K/O and the treatment groups was lower than in the sham group. In Western blot, the expression of inflammasomes was higher after TBI in the sham group, but the expression of interleukin-1β, caspase-1, and NLRP3 was decreased significantly following treatment with pioglitazone. The expression of GFAP (glial fibrillary acidic protein) and Iba1 was decreased in both the K/O and treatment groups. In addition, confocal microscopy revealed a decrease in microglial cell and astrocyte activation following pioglitazone therapy.

CONCLUSIONS

The inflammasome NLRP3 plays a pivotal role in regulating cerebral edema and secondary inflammation. Interestingly, pioglitazone reduced cerebral edema and immune response after TBI by downregulating the effects of NLRP3. These results suggest that the clinical application of pioglitazone may be a neuroprotective strategy in TBI.