Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Jacob D. Bond x
Clear All Modify Search
Restricted access

Jacob D. Bond, Zhaoyang Xu and Ming Zhang


The extradural neural axis compartment (EDNAC) is an adipovenous zone that is located between the meningeal (ML) and endosteal (EL) layers of the dura mater and has been minimally investigated in the jugular foramen (JF) region. In this study, the authors aimed to explore the fine architecture of the EDNAC within the JF and evaluate whether the EDNAC can be used as a component for JF compartmentalization.


A total of 46 cadaveric heads (31 male, 15 female; age range 54–96 years) and 30 dry skulls were examined in this study. Twelve of 46 cadaveric heads were plastinated as a series of transverse (7 sets), coronal (3 sets), and sagittal (2 sets) slices and examined using stereomicroscopy and confocal microscopy. The dural entry points of the JF cranial nerves were recorded in 34 cadaveric skulls. The volumes of the JF, intraforaminal EDNAC, and internal jugular vein (IJV) were quantified.


Based on constant osseous landmarks, the JF was subdivided into preforaminal, intraforaminal, and subforaminal segments. The ML-derived fascial sheath along the anteromedial wall of the IJV demarcated the “venous portion” and the “EDNAC portion” of the bipartite JF. The EDNAC did not surround the intraforaminal IJV and comprised an ML-derived dural fibrous network and an adipose matrix. A fibrovenous curtain subdivided the intraforaminal EDNAC into a small anterior column containing cranial nerve (CN) IX and the anterior condylar venous plexus and a large posterior adipose column containing CNs X and XI. In the intraforaminal segment, the IJV occupied a slightly larger space in the foramen (57%; p < 0.01), whereas in the subforaminal segment it occupied a space of similar size to that of the EDNAC.


Excluding the IJV, the neurovascular structures in the JF traverse the dural fibrous network that is dominant in the foraminal EDNAC. The results of this study will contribute to anatomical knowledge of the obscure yet crucially important JF region, increase understanding of foraminal tumor growth and spread patterns, and facilitate the planning and execution of surgical interventions.