Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Hung Tzu Wen x
Clear All Modify Search
Restricted access

Hung Tzu Wen, Albert L. Rhoton Jr. and Raul Marino Jr.

Object. The authors introduce the surgical concept of the central core of a hemisphere, from which anatomical structures are disconnected during most current hemispherotomy techniques. They also propose key anatomical landmarks for hemispherotomies that can be used to disconnect the hemisphere from its lateral surface around the insula, through the lateral ventricle toward the midline.

Methods. This anatomical study was performed in five adult cadaveric heads following perfusion of the cerebral arteries and veins with colored latex. Anatomical landmarks were used in five hemispheric deafferentations. The central core of a hemisphere consists of extreme, external, and internal capsules; claustrum; lentiform and caudate nuclei; and thalamus. Externally, this core is covered by the insula and surrounded by the fornix, choroid plexus, and lateral ventricle. During most hemispherotomies, the surgeon reaches the lateral ventricle through the frontoparietal opercula or temporal lobe; removes the mesial temporal structures; and disconnects the frontal lobe ahead, the parietal and occipital lobes behind, and the intraventricular fibers of the corpus callosum above the central core. After a temporal lobectomy, the landmarks include the choroid plexus and posterior/ascending portion of the tentorium to disconnect the parietal and occipital lobes, the callosal sulcus or distal anterior cerebral artery (ACA) to sever the intraventricular fibers of the corpus callosum, and the head of the caudate nucleus and ACA to detach the frontal lobe.

Conclusions. These landmarks can be used in any hemispherotomy during which a cerebral hemisphere is disconnected from its lateral surface. Furthermore, they can be used to perform any resection around the central core of the hemisphere and the tentorial incisura.

Restricted access

Eduardo Carvalhal Ribas, Kaan Yagmurlu, Hung Tzu Wen and Albert L. Rhoton Jr.

OBJECT

The purpose of this study was to describe the location of each white matter pathway in the area between the inferior limiting insular sulcus (ILS) and temporal horn that may be crossed in approaches through the temporal stem to the medial temporal lobe.

METHODS

The fiber tracts in 14 adult cadaveric cerebral hemispheres were examined using the Klingler technique. The fiber dissections were completed in a stepwise manner, identifying each white matter pathway in different planes and describing its position in relation to the anterior end of the ILS.

RESULTS

The short-association fibers from the extreme capsule, which continue toward the operculae, are the most superficial subcortical layer deep to the ILS. The external capsule fibers are found deeper at an intermediate layer and are formed by the uncinate fasciculus, inferior frontooccipital fasciculus, and claustrocortical fibers in a sequential anteroposterior disposition. The anterior commissure forms the next deeper layer, and the optic radiations in the sublenticular part of the internal capsule represent the deepest layer. The uncinate fasciculus is found deep to the anterior third of the ILS, whereas the inferior frontooccipital fasciculus and optic radiations are found superficial and deep, respectively, at the posterior two-thirds of this length.

CONCLUSIONS

The authors' findings suggest that in the transsylvian approach, a 6-mm incision beginning just posterior to the limen insula through the ILS will cross the uncinate fasciculus but not the inferior frontooccipital fasciculus or optic radiations, but that longer incisions carry a risk to language and visual functions.

Restricted access

Tzu-Ming Yang, Wei-Che Lin, Wen-Neng Chang, Jih-Tsun Ho, Hung-Chen Wang, Nai-Wen Tsai, Yi-Ting Shih and Cheng-Hsien Lu

Object

Seizures are an important neurological complication of spontaneous intracerebral hemorrhage (ICH). A better understanding of the risk factors of seizures following ICH is needed to predict which patients will require treatment.

Methods

Two hundred and forty-three adult patients were enrolled in this 1-year retrospective study. Multiple logistic regression was used to evaluate the relationship between baseline clinical factors and the presence or absence of seizure during the study period.

Results

Seizures occurred in 20 patients with ICH, including acute symptomatic seizures in 9 and unprovoked seizures in 11. None progressed to status epilepticus during hospitalization. After a minimum 3-year follow-up period, the mean Glasgow Outcome Scale score was 3.8 ± 1.1 for patients who had had seizures and 3.5 ± 1.3 for those who had not. The multiple logistic regression model demonstrated that the mean ICH volume was independently associated with seizures, and any increase of 1 mm3 in ICH volume increased the seizure rate by 2.7%.

Conclusions

Higher mean ICH volumes at presentation were predictive of seizure, and the presence of late seizures was predictive of developing epilepsy. Most seizures occurred within 2 years of spontaneous ICH over a minimum of 3 years of follow-up.

Restricted access

Hung-Chen Wang, Tzu-Ming Yang, Wei-Che Lin, Yu-Jun Lin, Nai-Wen Tsai, Chia-Wei Liou, Aij-Lie Kwan and Cheng-Hsien Lu

Object

Increased plasma nuclear and mitochondrial DNA levels have been reported in critically ill patients, and extracellular DNA may originate from damaged tissues having undergone necrosis. This study tested the hypothesis that nuclear and mitochondrial DNA levels in CSF and plasma are substantially increased in patients with acute spontaneous aneurysmal subarachnoid hemorrhage (SAH) and decrease thereafter, such that nuclear and mitochondrial DNA levels may be predictive of treatment outcomes.

Methods

Serial nuclear and mitochondrial DNA levels in CSF and plasma from 21 adult patients with spontaneous aneurysmal SAH and 39 healthy volunteers who received myelography examinations during the study period were evaluated.

Results

Data showed that circulating plasma nuclear DNA concentrations and both nuclear and mitochondrial DNA levels in CSF significantly increased in patients with aneurysmal SAH on admission compared with the volunteers. In patients with poor outcome, the CSF nuclear and mitochondrial DNA levels were significantly higher on Days 1 and 4, and plasma nuclear DNA levels were significantly higher from Day 8 to Day 14. Higher CSF nuclear (> 85.1 ng/ml) and mitochondrial DNA levels (> 31.4 ng/ml) on presentation were associated with worse outcome in patients with aneurysmal SAH.

Conclusions

Higher CSF DNA levels on presentation, rather than plasma DNA levels, are associated with worse outcomes in patients with acute spontaneous aneurysmal SAH. More prospective multicenter investigations are needed to confirm the predictive value of CSF and plasma DNA levels on outcome.

Restricted access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.

Free access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.