Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Hui Ding x
Clear All Modify Search
Restricted access

Xinqiang Yao, Ruoting Ding, Junhao Liu, Siyuan Zhu, Jingshen Zhuang, Zhongyuan Liu, Hui Jiang, Dongbin Qu, Qingan Zhu and Jianting Chen

OBJECTIVE

The aim of this study was to evaluate the effect of lumbar sacralization on the level of vertebral slip and disc degeneration in patients with L4 spondylolysis.

METHODS

The authors analyzed data from 102 cases in which patients underwent surgical treatment for L4 spondylolysis and spondylolisthesis at their institution between March 2007 and September 2016. Lumbar sacralization was characterized by the presence of pseudarthrosis and/or bony fusion between the L5 transverse process and sacrum, and the type of lumbosacral transitional vertebra (LSTV) was evaluated with the Castellvi classification. The amount of vertebral slippage was measured using the Taillard technique and Meyerding grade. Degeneration of the L4–5 segment was quantified using the Pfirrmann and Modic classifications. Patients were divided into 2 groups based on the presence or absence of sacralization, and the amount of vertebral slip and degeneration of the L4–5 segment was compared between groups.

RESULTS

Lumbar sacralization was present in 37 (36%) of 102 patients with L4 spondylolysis. The LSTV was type IIa in 10 cases, type IIb in 7, type IIIa in 2, and type IIIb in 18. The levels of vertebral slip and disc degeneration in the group of patients with sacralization were significantly greater than in the group without sacralization. No significant difference was found between the 2 groups with respect to Modic changes.

CONCLUSIONS

The increased stability between a sacralized L5 and the sacrum may predispose the L4–5 segment to greater instability and disc degeneration in patients with L4 spondylolysis.

Full access

JianMing Luo, Bin Liu, ZeYu Xie, Shan Ding, ZeRui Zhuang, Lan Lin, YanChun Guo, Hui Chen and Xiaojun Yu

Object

The object of this study was to compare the effects and complications of manual and computer-aided shaping of titanium meshes for repairing large frontotemporoparietal skull defects following traumatic brain injury.

Methods

From March 2005 to June 2011, 161 patients with frontotemporoparietal skull defects were observed. Patients were divided into 2 groups according to the repair materials used for cranioplasty: 83 cases used computer-aided shaping for the titanium mesh, whereas the remaining 78 cases used a manually shaped titanium mesh. The advantages and disadvantages of the 2 methods were compared.

Results

No case of titanium mesh loosening occurred in either group. Subcutaneous fluid collection, titanium mesh tilt, and temporal muscle pain were the most common complications. In the manually shaped group, there were 14 cases of effusion, 10 cases of titanium mesh tilt, and 15 cases of temporal muscle pain. In the computer-aided group, there were 6 cases of effusion, 3 cases of titanium mesh tilt, and 6 cases of temporal muscle pain. The differences were significant between the 2 groups (p < 0.05). Other common complications were scalp infection, exposure of titanium mesh, epidural hematoma, and seizures. In the computer-aided group, the operative time decreased (p < 0.01), the number of screws used was reduced (p < 0.01), and the satisfaction of patients was significantly increased (p < 0.05).

Conclusions

Computer-aided shaping of titanium mesh for repairing large frontotemporoparietal skull defects decreases postoperative complications and the operative duration, reduces the number of screws used, increases the satisfaction of patients, and restores the appearance of the patient's head, making it an ideal choice for cranioplasty.