Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Hsiu Mei Wu x
Clear All Modify Search
Restricted access

Kang-Du Liu, Wen-Yuh Chung, Hsiu-Mei Wu, Cheng-Ying Shiau, Ling-Wei Wang, Wan-You Guo and David Hung-Chi Pan

Object. The authors sought to determine the value of gamma knife surgery (GKS) in the treatment of cavernous hemangiomas (CHs).

Methods. Between 1993 and 2002, a total of 125 patients with symptomatic CHs were treated with GKS. Ninety-seven patients presented with bleeding and 45 of these had at least two bleeding episodes. Thirteen patients presented with seizures combined with hemorrhage, and 15 patients presented with seizures alone. The mean margin dose of radiation was 12.1 Gy and the mean follow-up time was 5.4 years.

In the 112 patients who had bled the number of rebleeds after GKS was 32. These rebleeds were defined both clinically and based on magnetic resonance imaging for an annual rebleeding rate of 32 episodes/492 patient-years or 6.5%. Twenty-three of the 32 rebleeding episodes occurred within 2 years after GKS. Nine episodes occurred after 2 years; thus, the annual rebleeding rate after GKS was 10.3% for the first 2 years and 3.3% thereafter (p = 0.0038). In the 45 patients with at least two bleeding episodes before GKS, the rebleeding rate dropped from 29.2% (55 episodes/188 patient-years) before treatment to 5% (10 episodes/197 patient-years) after treatment (p < 0.0001). Among the 28 patients who presented with seizures, 15 (53%) had good outcomes (Engel Grades I and II). In this study of 125 patients, symptomatic radiation-induced complications developed in only three patients.

Conclusions. Gamma knife surgery can effectively reduce the rebleeding rate after the first symptomatic hemorrhage in patients with CH. In addition, GKS may be useful in reducing the severity of seizures in patients with CH.

Restricted access

David Hung-chi Pan, Wen-yuh Chung, Wan-yuo Guo, Hsiu-mei Wu, Kang-du Liu, Cheng-ying Shiau and Ling-wei Wang

Object. The aim of this study was to assess the efficacy and safety of radiosurgery for the treatment of dural arteriovenous fistulas (DAVFs) located in the region of the transverse—sigmoid sinus.

Methods. A series of 20 patients with DAVFs located in the transverse—sigmoid sinus, who were treated with gamma knife surgery between June 1995 and June 2000, was evaluated. According to the Cognard classification, the DAVF was Type I in four patients, Type IIa in seven, Type IIb in two, and combined Type IIa+b in seven. Nine patients had previously been treated with surgery and/or embolization, whereas 11 patients underwent radiosurgery alone. Radiosurgery was performed using multiple-isocenter irradiation of the delineated DAVF nidus. The target volume ranged from 1.7 to 40.7 cm3. The margin dose delivered to the nidus ranged from 16.5 to 19 Gy at a 50 to 70% isodose level.

Nineteen patients were available for follow-up review, the duration of which ranged from 6 to 58 months (median 19 months). Of the 19 patients, 14 (74%) were cured of their symptoms. At follow up, magnetic resonance imaging and/or angiography demonstrated complete obliteration of the DAVF in 11 patients (58%), subtotal obliteration (95% reduction of the nidus) in three (16%), and partial obliteration in another five (26%). There was no neurological complication related to the treatment. One patient experienced a recurrence of the DAVF 18 months after angiographic confirmation of total obliteration, and underwent a second course of radiosurgery.

Conclusions. Stereotactic radiosurgery provides a safe and effective option for the treatment of DAVFs involving the transverse and sigmoid sinuses. For some aggressive DAVFs with extensive retrograde cortical venous drainage, however, a combination of endovascular embolization and surgery may be necessary.

Restricted access

Chia-An Wu, Huai-Che Yang, Yong-Sin Hu, Hsiu-Mei Wu, Chung-Jung Lin, Chao-Bao Luo, Wan-Yuo Guo, Cheng-Chia Lee, Kang-Du Liu and Wen-Yuh Chung

OBJECTIVE

Gamma Knife surgery (GKS) obliterates 65%–87% of cavernous sinus dural arteriovenous fistulas (CSDAVFs). However, the hemodynamic effect on GKS outcomes is relatively unknown. The authors thus used the classification scheme developed by Suh et al. to explore this effect.

METHODS

The authors retrospectively (1993–2016) included 123 patients with CSDAVFs who received GKS alone at the institute and classified them as proliferative type (PT; n = 23), restrictive type (RT; n = 61), or late restrictive type (LRT; n = 39) after analyzing their pre-GKS angiography images. Treatment parameters, the presence of numerous arterial feeders, and venous drainage numbers were compared across the CSDAVF types. Patients’ follow-up MR images were evaluated for the presence of complete obliteration. A Kaplan-Meier analysis was conducted to determine the correlation between CSDAVF types and outcomes.

RESULTS

The 36-month probability of complete obliteration was 74.3% for all patients, with no significant differences across types (p = 0.56). PT had the largest radiation volume (6.5 cm3, p < 0.001), the most isocenters (5, p = 0.015) and venous drainage routes (3, p < 0.001), and the lowest peripheral dose (16.6 Gy, p = 0.011) and isodose level coverage (64.3%, p = 0.006). CSDAVFs presenting with ocular patterns were less likely to be completely obliterated (hazard ratio 0.531, p = 0.009). After adjustment for age, CSDAVFs with more venous drainage routes were less likely to be completely obliterated (hazard ratio 0.784, p = 0.039).

CONCLUSIONS

GKS is an equally effective treatment option for all 3 CSDAVF types. Furthermore, the number of venous drainage routes may help in predicting treatment outcomes and making therapeutic decisions.

Free access

Cheng-Chia Lee, David Hung-Chi Pan, Wen-Yuh Chung, Kang-Du Liu, Huai-Che Yang, Hsiu-Mei Wu, Wan-Yuo Guo and Yang-Hsin Shih

Object

The authors retrospectively reviewed the efficacy and safety of Gamma Knife surgery (GKS) in patients with brainstem cavernous malformations (CMs). The CMs had bled repeatedly and placed the patients at high risk with respect to surgical intervention.

Methods

Between 1993 and 2010, 49 patients with symptomatic CMs were treated by GKS. The mean age in these patients was 37.8 years, and the predominant sex was female (59.2%). All 49 patients experienced at least 2 instances of repeated bleeding before GKS; these hemorrhages caused neurological deficits including cranial nerve deficits, hemiparesis, hemisensory deficits, spasticity, chorea or athetosis, and consciousness disturbance.

Results

The mean size of the CMs at the time of GKS was 3.2 cm3 (range 0.1–14.6 cm3). The mean radiation dose directed to the lesion was 11 Gy with an isodose level at 60.0%. The mean clinical and imaging follow-up time was 40.6 months (range 1.0–150.7 months). Forty-five patients participated in regularly scheduled follow-up. Twenty-nine patients (59.2%) were followed up for > 2 years, and 16 (32.7%) were followed up for < 2 years. The pre-GKS annual hemorrhage rate was 31.3% (69 symptomatic hemorrhages during a total of 220.3 patient-years). After GKS, 3 episodes of symptomatic hemorrhage were observed within the first 2 years of follow-up (4.29% annual hemorrhage rate), and 3 episodes of symptomatic hemorrhage were observed after the first 2 years of follow-up (3.64% annual hemorrhage rate). In this study of 49 patients, symptomatic radiation-induced complications developed in only 2 patients (4.1%; cyst formation in 1 patient and perifocal edema with neurological deficits in the other patient). There were no deaths in this group.

Conclusions

Gamma Knife surgery is effective in reducing the rate of recurrent hemorrhage. In the authors' experience, it was possible to control bleeding using a low-dose treatment. In addition, there were few symptomatic radiation-induced complications. As a result, the authors believe that GKS is a good alternative treatment for brainstem CMs.

Free access

Cheng-Chia Lee, Hsiu-Mei Wu, Wen-Yuh Chung, Ching-Jen Chen, David Hung-Chi Pan and Sanford P. C. Hsu

Object

Resection of vestibular schwannoma (VS) after Gamma Knife surgery (GKS) is infrequently performed. The goals of this study were to analyze and discuss the neurological outcomes and technical challenges of VS resection and to explore strategies for treating tumors that progress after GKS.

Methods

In total, 708 patients with VS underwent GKS between 1993 and 2012 at Taipei Veterans General Hospital. The post-GKS clinical courses, neurological presentations, and radiological changes in these patients were analyzed. Six hundred patients with imaging follow-up of at least 1 year after GKS treatment were included in this study.

Results

Thirteen patients (2.2%) underwent microsurgery on average 36.8 months (range 3–107 months) after GKS. The indications for the surgery included symptomatic adverse radiation effects (in 4 patients), tumor progression (in 6), and cyst development (in 3). No morbidity or death as a result of the surgery was observed. At the last follow-up evaluation, all patients, except 1 patient with a malignant tumor, had stable or near-normal facial function.

Conclusions

For the few VS cases that require resection after radiosurgery, maximal tumor resection can be achieved with modern skull-based techniques and refined neuromonitoring without affecting facial nerve function.

Restricted access

Hsiu-Mei Wu, David Hung-Chi Pan, Wen-Yuh Chung, Wan-Yuo Guo, Kang-Du Liu, Cheng-Ying Shiau, Ling-Wei Wang and Shih-Jen Chen

Object

The purpose of this study was to assess the efficacy and safety of Gamma Knife surgery (GKS) for the treatment of cavernous sinus dural arteriovenous fistulas (CSDAVFs) and other intracranial dural arteriovenous fistulas (ODAVFs).

Methods

Among the 238 GKS procedures performed for intracranial DAVFs in the authors' institute, 227 cases (146 CSDAVFs and 81 OIDAVFs) with clinical follow up formed the database from which the authors determined clinical outcome and the incidence of untoward events. One hundred ninety-five cases (118 CSDAVFs and 77 ODAVFs) with imaging follow up formed the database from which the authors determined the imaging results.

Older age, female sex, higher incidence of diabetes, and shorter duration of symptoms were noted more in cases of CSDAVF than in ODAVFs. Most patients had symptomatic improvement after GKS. A symptomatic cure was observed in one patient with CSDAVFs as early as 6 weeks. The cumulative cure rate based on follow-up angiography of CSDAVFs approached 75% at 24 months, which was much better than that of ODAVFs (approximately 50% at 24 months). A neuroimaging-based cure lagged behind that of the clinical symptoms. Overall, there were only two nonfatal intracerebral hemorrhages during the follow-up period, both occurring less than 1 week after GKS and both being Cognard Type IIa+b with initial aggressive symptoms. Transient deterioration of neurological status without hemorrhage was noted in six patients with ODAVFs. Thrombosis of the superior ophthalmic vein occurred in 11 patients with CSDAVFs, in two of whom there were unilateral visual impairments. There were three cranial nerve neuropathies: transient in one CSDAVF and one ODAVF involving the jugular foramen, and another one was a CSDAVF previously treated by conventional radiotherapy.

Conclusions

Gamma Knife surgery provides a safe and effective option for treatment of intracranial DAVFs with a low risk of complications. In cases of DAVFs with benign clinical presentation, GKS can serve as a primary treatment. In some cases of aggressive DAVFs in which there is extensive retrograde cortical vein drainage, combined treatment with embolization or surgery is suggested.

Restricted access

Dennis R. Buis and W. Peter Vandertop

Restricted access

Wen-Yuh Chung, Cheng-Ying Shiau, Hsiu-Mei Wu, Kang-Du Liu, Wan-Yuo Guo, Ling-Wei Wang and David Hung-Chi Pan

Object

The effectiveness and safety of radiosurgery for small- to medium-sized cerebral arteriovenous malformations (AVMs) have been well established. However, the management for large cerebral AVMs remains a great challenge to neurosurgeons. In the past 5 years the authors performed preplanned staged radiosurgery to treat extra-large cerebral AVMs.

Methods

An extra-large cerebral AVM is defined as one with nidus volume > 40 ml. The nidus volume of cerebral AVM is measured from the dose plan—that is, as being the volume contained within the best-fit prescription isodose. From January 2003 to December 2007, the authors treated 6 patients with extra-large AVMs by preplanned staged GKS. Staged radiosurgery is implemented by rigid transformation with translation and rotation of coordinates between 2 stages. The average radiation-targeted volume was 60 ml (range 47–72 ml). The presenting symptoms were seizure in 4 patients and a bleeding episode in 2. One patient had undergone a previous craniotomy and evacuation of hematoma. The mean interval between the 2 radiosurgical sessions was 6.9 months (range 4.5–9.1 months). The prescribed marginal dose given to the nidus volume in each stage ranged from 16 to 18.6 Gy. The expected marginal dose of total nidus was 17–19 Gy. Regular follow-up MR imaging was performed every 6 months. The mean follow-up period was 28 months (range 12–54 months).

Results

Most of the patients exhibited clinical improvement: relief of headache and reduced frequency of seizure attack. All patients had significant regression of nidus observed on MR imaging follow-up. Two patients had angiogram-confirmed complete obliteration of the nidus 45 and 60 months after the second-stage radiosurgical session. One patient experienced minor bleeding 8 months after the second-stage radiosurgery with mild headache. She had satisfactory recovery without clinical neurological deficit after conservative treatment.

Conclusions

These preliminary results indicate that staged radiosurgery is a practical strategy to treat patients with extra-large cerebral AVMs. It takes longer to obliterate the AVMs. The observed high signal T2 changes after the radiosurgery appeared clinically insignificant in 6 patients followed up for an average of 28 months. Longer follow-up is necessary to confirm its long-term safety.

Restricted access

Ling-Wei Wang, Cheng-Ying Shiau, Wen-Yuh Chung, Hsiu-Mei Wu, Wan-Yuo Guo, Kang-Du Liu, Donald Ming-tak Ho, Tai-Tong Wong and David Hung-Chi Pan

Object

The authors report the long-term treatment results of Gamma Knife surgery (GKS) for patients with low-grade astrocytomas who underwent surgery at a single institution.

Methods

A series of 21 patients (median age 20 years) with 25 intracranial low-grade astrocytomas (World Health Organization Grades I and II) were treated with GKS between 1993 and 2003. Among them, four underwent GKS as a primary treatment. Two underwent GKS as a treatment boost after radiotherapy. In the other 15 patients, GKS was performed as an adjuvant or salvage treatment for residual/recurrent tumors after the patients had undergone craniotomy. Tumor volumes ranged from 0.2 to 13.3 ml (median 2.4 ml). Prescription margin doses ranged from 8 to 18 Gy (median 14.5 Gy). Radiation volumes were 1.3 to 21.6 ml (median 3.6 ml). Patients underwent regular follow up, with neurological evaluation and magnetic resonance imaging studies obtained at 6-month intervals.

One patient was lost to follow-up. The clinical follow-up time was 5 to 144 months (median 67 months). Complete tumor remission was seen in three patients. The 10-year progression-free patient survival rate after GKS was 65%. Tumor progression was found in six patients of whom five received further salvage treatment. All the tumor progression occurred within the GKS-treated volumes. Mild-to-moderate adverse radiation effects (AREs) were found in eight patients. Both of the patients who had undergone GKS as a treatment boost after radiotherapy developed AREs, but with good shrinkage of tumors.

Conclusions

Gamma Knife surgery provides durable long-term local tumor control with acceptable toxicity for some patients with highly selected low-grade astrocytomas.

Restricted access