Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Hiroshi Taneichi x
Clear All Modify Search
Full access

Makoto Ohe, Hiroshi Moridaira, Satoshi Inami, Daisaku Takeuchi, Yutaka Nohara and Hiroshi Taneichi

OBJECTIVE

Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model.

METHODS

Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9–L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing.

RESULTS

The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks.

CONCLUSIONS

Using PSs with a thin HA coating applied using a sputtering process strengthens bonding at the BII, which might improve early implant fixation after spinal surgery for osteoporosis. However, the absence of increased bone mass around the screw remains a concern; prescribing osteoporosis treatment to improve bone quality might be necessary to prevent fractures around the screws.

Restricted access

Hiroshi Taneichi, Kota Suda, Tomomichi Kajino, Akira Matsumura, Hiroshi Moridaira and Kiyoshi Kaneda

Object

There are no published reports of unilateral transforaminal lumbar interbody fusion (TLIF) in which two Brantigan I/F cages were placed per level through a single portal to achieve bilateral anterior-column support. The authors describe such a surgical technique and evaluate the clinical outcomes of this procedure.

Methods

Data obtained in 86 (93.5%) of the first 92 consecutive patients who underwent the procedure were retrospectively reviewed; the minimum follow-up duration was 2 years. The clinical outcomes were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Disc height, disc angle, cage positioning in the axial plane, and fusion status were radiographically evaluated.

The mean follow-up period was 33.8 months. The mean improvement in the JOA score was 77.2%. Fusion was successful in 93% of the cases. According to the Farfan method, the mean anterior and posterior disc heights increased from 20.2 and 16.9% preoperatively to 35.9 and 22.7% at follow up, respectively (p < 0.01). The mean disc angle increased from 4.8° preoperatively to 7.5° at last follow-up examination (p < 0.01). Two cages were correctly placed to achieve bilateral anterior-column support in greater than 85% of the cases. The following complications occurred: hardware migration in two patients and deep infection cured by intravenous antibiotic therapy in one patient.

Conclusions

Unilateral TLIF involving the placement of two Brantigan cages per level led to good clinical results. Two Brantigan cages were adequately placed via a single portal, and reliable bilateral anterior-column support was achieved. Although the less invasive unilateral approach was used, the outcomes were as good as those in many reported series of posterior lumbar interbody fusion in which the Brantigan cages were placed via the bilateral approach.

Restricted access

Hitoshi Haba, Hiroshi Taneichi, Yoshihisa Kotani, Satoshi Terae, Satoru Abe, Hiroyuki Yoshikawa, Kuniyoshi Abumi, Akio Minami and Kiyoshi Kaneda

Object

The posterior ligamentous complex (PLC) in the thoracic and lumbar spine is one of the region's important stabilizers. The precise diagnosis of PLC injury is required to evaluate the instability of the injured spine; however, the accuracy of magnetic resonance (MR) imaging for diagnosing PLC injury has remained unclear. In this study, the authors compared preoperative MR imaging findings with direct intraoperative observation of PLC injury, clarifying the former's diagnostic accuracy regarding detection of PLC injury associated with the thoracic and lumbar fractures.

Methods

Data obtained in 35 patients who sustained thoracic or lumbar injuries were reviewed. There were 17 burst fractures, six flexion—distraction injuries, and 12 fracture dislocations. Each patient underwent MR imaging examination within 3 weeks of injury. Three radiologists independently evaluated sagittal MR images in a blinded fashion. The PLC-related information was retrospectively collected from each operative record. The diagnostic accuracy of MR imaging was analyzed by comparing imaging-documented intraoperative findings.

The PLC injuries were detected in 23 patients (65.7%) by direct observation during posterior spinal procedures. The diagnostic accuracy of MR imaging in detecting injury of the supraspinous ligament (SSL) and interspinous ligament (ISL) was 90.5 and 94.3%, respectively. The specificity of T1-weighted MR imaging alone for depicting the SSL was significantly greater than T2-weighted imaging alone (p < 0.05). The overall mean κ coefficient for MR imaging findings of PLC injury was 0.803, which indicated excellent interobserver reliability; that for ISL (0.915) was significantly greater than that for SSL (0.69) (p < 0.05).

Conclusions

This study clarified a high diagnostic accuracy and interobserver reliability of MR imaging for PLC injury. The precise diagnosis of PLC injury is essential to determine the mechanical instability of the injured thoracic and lumbar spine, especially in differentiating unstable (three-column) burst fractures from the relatively stable (two-column) type. The authors conclude that MR imaging is a powerful diagnostic tool to evaluate PLC injury associated with thoracic and lumbar fractures.

Restricted access

Morio Matsumoto, Yoshiaki Toyama, Hirotaka Chikuda, Katsushi Takeshita, Tsuyoshi Kato, Shigeo Shindo, Kuniyoshi Abumi, Masahiko Takahata, Yutaka Nohara, Hiroshi Taneichi, Katsuro Tomita, Norio Kawahara, Shiro Imagama, Yukihiro Matsuyama, Masashi Yamazaki and Akihiko Okawa

Object

The aim of this study was to evaluate the outcomes of fusion surgery in patients with ossification of the posterior longitudinal ligament in the thoracic spine (T-OPLL) and to identify factors significantly related to surgical outcomes.

Methods

The study included 76 patients (34 men and 42 women with a mean age of 56.3 years) who underwent fusion surgery for T-OPLL at 7 spine centers during the 5-year period from 2003 to 2007. The authors evaluated the patient demographic data, underlying disease, preoperative comorbidities, history of spinal surgery, radiological findings, surgical methods, surgical outcomes, and complications. Surgical outcomes were assessed using the Japanese Orthopaedic Association (JOA) scale score for thoracic myelopathy (11 points) and the recovery rate.

Results

The mean JOA scale score was 4.6 ± 2.1 points preoperatively and 7.7 ± 2.5 points at the time of the final follow-up examination, yielding a mean recovery rate of 45.4% ± 39.1%. The recovery rates by surgical method were 38.5% ± 37.8% for posterior decompression and fusion, 65.0% ± 35.6% for anterior decompression and fusion via an anterior approach, 28.8% ± 41.2% for anterior decompression via a posterior approach, and 57.5% ± 41.1% for circumferential decompression and fusion. The recovery rate was significantly higher in patients without diabetes mellitus (DM) than in those with DM. One or more complications were experienced by 31 patients (40.8%), including 20 patients with postoperative neurological deterioration, 7 with dural tears, 5 with epidural hematomas, 4 with respiratory complications, and 10 with other complications.

Conclusions

The outcomes of fusion surgery for T-OPLL were favorable. The absence of DM correlated with better outcomes. However, a high rate of complications was associated with the fusion surgery.

Restricted access

Hideyuki Arima, Steven D. Glassman, Keith Bridwell, Yu Yamato, Mitsuru Yagi, Kota Watanabe, Morio Matsumoto, Satoshi Inami, Hiroshi Taneichi, Yukihiro Matsuyama and Leah Y. Carreon

OBJECTIVE

The Scoliosis Research Society-22r questionnaire (SRS-22r) has been shown to be reliable, valid, and responsive to change in patients with adult spinal deformity (ASD) undergoing surgery. The minimal clinically important difference (MCID) is the smallest difference in a health-related quality of life score that is considered to be worthwhile or clinically important to the individual. The authors hypothesized that the proportion of patients with ASD achieving an MCID in the SRS-22r score would be different between two culturally different cohorts. The purpose of this study was to compare the proportion of patients with ASD achieving MCID for the SRS-22r domains in North American (NA) and Japanese cohorts.

METHODS

A total of 137 patients from North America (123 women, mean age 60.0 years) and 60 patients from Japan (56 women, mean age 65.5 years) with at least 2 years of follow-up after corrective spine surgery for ASD were included. Except for self-image, published Japanese MCID values of SRS-22r for ASD were higher (function = 0.90, pain = 0.85, self-image = 1.05, subtotal = 1.05) than the published NA MCID values (function = 0.60, pain = 0.40, self-image = 1.23, subtotal = 0.43).

RESULTS

There was a statistically significant improvement in all SRS-22r domain scores at 2 years compared to baseline in both cohorts. Except for mental health (NA = 0.32, Japanese = 0.72, p = 0.005), the mean improvement from baseline to 2 years was similar between the NA and Japanese cohorts. The proportion of patients achieving MCID was higher in North America for function (NA = 51%, Japanese = 30%, p = 0.006), pain (NA = 80%, Japanese = 47%, p < 0.001), and subtotal (NA = 72%, Japanese = 35%, p < 0.001), while there was no significant difference for self-image (NA = 53%, Japanese = 58%, p = 0.454).

CONCLUSIONS

Despite similar improvements in SRS-22r domain scores from baseline to 2 years postoperatively, the proportion of patients reaching SRS-22r MCID for function, pain, and subtotal after ASD surgery was higher in the NA cohort than in the Japanese cohort. This may imply that patients in North America and Japan may value observed changes in clinical status differently.