Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Hironori Arima x
Clear All Modify Search
Free access

Hiroki Morisako, Takeo Goto, Christian A. Bohoun, Hironori Arima, Tsutomu Ichinose and Kenji Ohata

Surgical resection of pontine cavernous malformation remains a particularly formidable challenge. We report the surgical outcome of eight cases with pontine cavernous malformations operated using the anterior transpetrosal approach. All cases presented with neurological deficits caused by hemorrhage before surgery. Gross-total removal was achieved in all cases without any postoperative complication such as worsening of facial nerve palsy, ocular movement disorder, or hemiplegia. A small incision of the pons with multidirectional dissection is the most important factor for minimizing postoperative neurological deficits, so resection of a pontine cavernous malformation via this approach can be an alternative better option.

The video can be found here:

Full access

Kentaro Naito, Toru Yamagata, Hironori Arima, Junya Abe, Naohiro Tsuyuguchi, Kenji Ohata and Toshihiro Takami


Although the usefulness of PET for brain lesions has been established, few reports have examined the use of PET for spinal intramedullary lesions. This study investigated the diagnostic utility of PET/CT for spinal intramedullary lesions.


l-[methyl-11C]-methionine (MET)- or [18F]-fluorodeoxyglucose (FDG)-PET/CT was performed in 26 patients with spinal intramedullary lesions. The region of interest (ROI) within the spinal cord parenchyma was placed manually in the axial plane. Maximum pixel counts in the ROIs were normalized to the maximum standardized uptake value (SUVmax) using subject body weight. For FDG-PET the SUVmax was corrected for lean body mass (SULmax) to exclude any influence of the patient’s body shape. Each SUV was analyzed based on histopathological results after surgery. The diagnostic validity of the SUV was further compared with the tumor proliferation index using the MIB-1 monoclonal antibody (MIB-1 index).


A total of 16 patients underwent both FDG-PET and MET-PET, and the remaining 10 patients underwent either FDG-PET or MET-PET. Pathological diagnoses included high-grade malignancy such as glioblastoma multiforme, anaplastic astrocytoma, or anaplastic ependymoma in 5 patients; low-grade malignancy such as hemangioblastoma, diffuse astrocytoma, or ependymoma in 12 patients; and nonneoplastic lesion including cavernous malformation in 9 patients. Both FDG and MET accumulated significantly in high-grade malignancy, and the SULmax and SUVmax correlated with the tumor proliferation index. Therapeutic response after chemotherapy or radiation in high-grade malignancy was well monitored. However, a significant difference in SULmax and SUVmax for FDG-PET and MET-PET was not evident between low-grade malignancy and nonneoplastic lesions.


Spinal PET/CT using FDG or MET for spinal intramedullary lesions appears useful and practical, particularly for tumors with high-grade malignancy. Differentiation of tumors with low-grade malignancy from nonneoplastic lesions may still prove difficult. Further technological refinement, including the selection of radiotracer or analysis evaluation methods, is needed.