Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hiroaki Yokoyama x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Blood blisterlike aneurysms of the internal carotid artery

Masamitsu Abe, Kazuo Tabuchi, Hiroaki Yokoyama, and Akira Uchino

Object. An aneurysm arising from the anterior wall of the internal carotid artery (ICA) is a poorly understood entity. A small hemispherical bulge from the anterior wall of the ICA, which is called a “blood blisterlike aneurysm” (BBA), may be confused with a tiny berry aneurysm although the clinical features are distinctly different. This paper summarizes the clinical course of patients with this lesion to clarify the nature of the BBA.

Methods. Six patients with BBAs who presented with subarachnoid hemorrhage (SAH) are described. In all patients, the initial angiogram obtained soon after SAH showed only a small bulge from the anterior wall of the ICA. In three of the six patients this bulge had progressed to a saccular appearance within a few weeks. The wall of the lesion was so thin and fragile that the aneurysm ruptured at the base during clipping or within a few hours after clipping in two patients.

Conclusions. From the authors' experience, as well as a review of the literature, which includes an autopsy study of similar cases, it is inferred that these lesions are focal wall defects covered only with thin fibrous tissue and that they are therefore not true aneurysms. Direct clipping often causes laceration of the lesion, whereas complete wrapping or clipping after wrapping is effective, but may fail to prevent growth of the aneurysm. Endovascular occlusion of the cervical ICA with or without bypass surgery, which is less risky than direct surgery, is another option.

Full access

Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system

Hiroaki Takei, Jun Shinoda, Soko Ikuta, Takashi Maruyama, Yoshihiro Muragaki, Tomohiro Kawasaki, Yuka Ikegame, Makoto Okada, Takeshi Ito, Yoshitaka Asano, Kazutoshi Yokoyama, Noriyuki Nakayama, Hirohito Yano, and Toru Iwama


Positron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification.


In total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers.


There were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG.


PET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010