Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Henry Jung x
Clear All Modify Search
Free access

Aatman Shah, Omar Choudhri, Henry Jung and Gordon Li

In this review paper the authors analyze new therapeutic options for the embolization of meningiomas, as well as the future of meningioma treatment through recent relevant cohorts and articles. They investigate various embolic materials, types of meningiomas amenable to embolization, imaging techniques, and potential imaging biomarkers that could aid in the delivery of embolic materials. They also analyze perfusion status, complications, and new technical aspects of endovascular preoperative embolization of meningiomas. A literature search was performed in PubMed using the terms “meningioma” and “embolization” to investigate recent therapeutic options involving embolization in the treatment of meningioma. The authors looked at various cohorts, complications, materials, and timings of meningioma treatment. Liquid embolic materials are preferable to particle agents because particle embolization carries a higher risk of hemorrhage. Liquid agents maximize the effect of devascularization because of deeper penetration into the trunk and distal tumor vessels. The 3 main imaging techniques, MRI, CT, and angiography, can all be used in a complementary fashion to aid in analyzing and treating meningiomas. Intraarterial perfusion MRI and a new imaging modality for identifying biomarkers, susceptibility-weighted principles of echo shifting with a train of observations (SW-PRESTO), can relay information about perfusion status and degrees of ischemia in embolized meningiomas, and they could be very useful in the realm of therapeutics with embolic material delivery. Direct puncture is yet another therapeutic technique that would allow for more accurate embolization and less blood loss during resection.

Free access

Aatman M. Shah, Henry Jung and Stephen Skirboll

Cranioplasty, one of the oldest surgical procedures used to repair cranial defects, has undergone many revolutions over time to find the ideal material to improve patient prognosis. Cranioplasty offers cosmetic and protective benefits for patients with cranial defects. The first primitive cranioplasty procedures date back to 7000 bc and used metal and gourds to repair cranial defects. Cranioplasty was first documented by Fallopius who described repair using gold plates; the first bone graft was documented by van Meekeren. The first significant improvement for this procedure began with experimentation involving bone grafts in the late 19th century as a more natural approach for repairing cranial defects. The next impetus for advancement came because of wartime injuries incurred during World Wars I and II and involved experimentation with synthetic materials to counter the common complications associated with bone grafts. Methyl methacrylate, hydroxyapatite, ceramics, and polyetheretherketone implants among other materials have since been researched and used. Research now has shifted toward molecular biology to improve the ability of the patient to regenerate bone using bone growth factors. This paper reviews the evolution of materials used over time in addition to the various advantages and pitfalls associated with each change. It is important for neurosurgeons to be mindful of how these techniques have evolved in order to gain a better understanding of this procedure and how it has been adapted.