Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Henrik Zetterberg x
  • All content x
Clear All Modify Search
Restricted access

Parmenion P. Tsitsopoulos, Ulrika Holmström, Kaj Blennow, Henrik Zetterberg, and Niklas Marklund


Degenerative cervical spondylotic myelopathy (CSM) is a major cause of spinal cord dysfunction with an unpredictable prognosis. Βiomarkers reflecting pathophysiological processes in CSM have been insufficiently investigated. It was hypothesized that preoperative cerebrospinal fluid (CSF) biomarker levels are altered in patients with CSM and correlate with neurological status and outcome.


CSF biomarkers from patients with CSM and controls were analyzed with immunoassays. Spinal cord changes were evaluated with MRI. The American Spinal Cord Injury Association Impairment Scale, the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ), and the EQ-5D questionnaire were applied prior to and 3 months after surgery. A p value < 0.05 was considered statistically significant.


Twenty consecutive CSM patients with a mean age of 67.7 ± 13 years and 63 controls with a mean age of 65.2 ± 14.5 years (p > 0.05) were included in the study. In the CSM subjects, CSF neurofilament light subunit (NF-L) and glial fibrillary acidic protein (GFAP) concentrations were higher (p < 0.05), whereas fatty acid–binding protein 3 (FABP3), soluble amyloid precursor proteins (sAPPα and sAPPβ), and amyloid β (Aβ) peptide (Aβ38, Aβ40, and Aβ42) concentrations were lower than in controls (p < 0.05). Aβ peptide levels correlated positively with symptom duration. Preoperative JOACMEQ lower extremity function and CSF NF-L levels correlated positively, and the JOACMEQ bladder function correlated negatively with sAPPα and sAPPβ (p < 0.05). CSF NF-L and FABP3 levels were higher in patients with improved outcome (EQ-5D visual analog scale difference > 20).


CSF biomarkers of glial and axonal damage, inflammation, and synaptic changes are altered in symptomatic CSM patients, indicating that axonal injury, astroglial activation, and Aβ dysmetabolism may be present in these individuals. These findings reflect CSM pathophysiology and may aid in prognostication. However, future studies including larger patient cohorts, postoperative biomarker data and imaging, and longer follow-up times are required to validate the present findings.

Restricted access

Niklas Marklund, Kaj Blennow, Henrik Zetterberg, Elisabeth Ronne-Engström, Per Enblad, and Lars Hillered


Damage to axons contributes to postinjury disabilities and is commonly observed following traumatic brain injury (TBI). Traumatic brain injury is an important environmental risk factor for the development of Alzheimer disease (AD). In the present feasibility study, the aim was to use intracerebral microdialysis catheters with a high molecular cutoff membrane (100 kD) to harvest interstitial total tau (T-tau) and amyloid beta 1–42 (Aβ42) proteins, which are important biomarkers for axonal injury and for AD, following moderate-to-severe TBI.


Eight patients (5 men and 3 women) were included in the study; 5 of the patients had a focal/mixed TBI and 3 had a diffuse axonal injury (DAI). Following the bedside analysis of the routinely measured energy metabolic markers (that is, glucose, lactate/pyruvate ratio, glycerol, and glutamate), the remaining dialysate was pooled and two 12-hour samples per day were used to analyze T-tau and Aβ42 by enzyme-linked immunosorbent assay from Day 1 up to 8 days postinjury.


The results show high levels of interstitial T-tau and Aβ42 postinjury. Patients with a predominantly focal lesion had higher interstitial T-tau levels than in the DAI group from Days 1 to 3 postinjury (p < 0.05). In contrast, patients with DAI had consistently higher Aβ42 levels when compared with patients with focal injury.


These results suggest that monitoring of interstitial T-tau and Aβ42 by using microdialysis may be an important tool when evaluating the presence and role of axonal injury following TBI.