Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Helen Shih x
Clear All Modify Search
Full access

Andrew E. H. Elia, Helen A. Shih and Jay S. Loeffler

✓Meningiomas are the second most common primary tumor of the brain. Gross-total resection remains the preferred treatment if achievable with minimal morbidity. For incompletely resected or inoperable benign meningiomas, 3D conformal external-beam radiation therapy can provide durable local tumor control in 90 to 95% of cases. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) are highly conformal techniques, using steep dose gradients and stereotactic patient immobilization. Stereotactic radiosurgery has been used as an alternative or adjuvant therapy to surgery for meningiomas in locations, such as the skull base, where operative manipulation may be particularly difficult. Stereotactic radiotherapy is useful for larger meningiomas (> 3–3.5 cm) and those closely approximating critical structures, such as the optic chiasm and brainstem. Although SRS has longer follow-up than SRT, both techniques have excellent 5-year tumor control rates of greater than 90% for benign meningiomas. Stereotactic radiotherapy has toxicity equivalent to that of radiosurgery, despite its biased use for larger meningiomas with more complicated volumes. Reported rates of imaging-documented regression are higher for radiosurgery, but neurological recovery is relatively good with both techniques. Stereotactic radiosurgery and fractionated SRT are complementary techniques appropriate for different clinical scenarios.

Full access

Ariel E. Marciscano, Anat O. Stemmer-Rachamimov, Andrzej Niemierko, Mykol Larvie, William T. Curry, Fred G. Barker II, Robert L. Martuza, Declan McGuone, Kevin S. Oh, Jay S. Loeffler and Helen A. Shih


World Health Organization (WHO) Grade I (benign) meningiomas with atypical features may behave more aggressively than similarly graded tumors without atypical features. Here, the prognostic significance of atypical features in benign meningiomas was determined.


Data from patients diagnosed with WHO Grade I benign meningiomas per the 2007 WHO criteria and who underwent surgery between 2002 and 2012 were retrospectively reviewed. Patients were stratified by the absence or presence of 1 to 2 atypical features with review of the clinical and histological factors.


A total of 148 patients met the inclusion criteria (n = 77 with atypia; n = 71 without atypia). The median follow-up duration after pathological diagnosis was 37.5 months. Thirty patients had progression/recurrence (P/R) after initial treatment, and 22 (73%) of 30 patients with P/R had 1–2 atypical features. The presence of atypical features was significantly associated with P/R (p = 0.03) and independent of the MIB-1 labeling index. The 1-year and 5-year actuarial rates of P/R were 9.6% versus 1.4% and 30.8% versus 13.8% fortumors with and without atypical features, respectively. Higher Simpson grade resection (II–IV vs I) was associated with the increased risk of P/R (p < 0.001). Stratification of patients into low-risk (Simpson Grade I), intermediate-risk (Simpson Grade II–IV with no atypical features), and high-risk groups (Simpson Grade II–IV with atypical features) was significantly correlated with increased risk of P/R (p < 0.001).


Patients with benign meningiomas with atypical features and those undergoing Simpson Grade II–IV resection are at significantly increased risk of P/R. Patients with these features may benefit from the consideration of additional surgery and/or radiation therapy.

Restricted access

Daniel Kim, Andrzej Niemierko, William L. Hwang, Anat O. Stemmer-Rachamimov, William T. Curry, Fred G. Barker II, Robert L. Martuza, Kevin S. Oh, Jay S. Loeffler and Helen A. Shih


Patients with atypical and malignant (WHO Grade II and III) meningiomas have a worse prognosis than patients with benign (WHO Grade I) meningiomas. However, there is limited understanding of the pathological risk factors that affect long-term tumor control following combined treatment with surgery and radiation therapy. Here, the authors identify clinical and histopathological risk factors for the progression and/or recurrence (P/R) of high-grade meningiomas based on the largest series of patients with atypical and malignant meningiomas, as defined by the 2007 WHO classification.


Patients diagnosed with WHO Grade II and III meningiomas between 2007 and 2014 per the WHO 2007 criteria and treated with both surgery and external beam radiation therapy were retrospectively reviewed for clinical and histopathological factors at the time of diagnosis and assessed for P/R outcomes at the last available follow-up.


A total of 76 patients met the inclusion criteria (66 Grade II meningiomas, 10 Grade III meningiomas). Median follow-up from the time of pathological diagnosis was 52.6 months. Three factors were found to predict P/R: Grade III histology, brain and/or bone invasion, and a Ki-67 proliferation rate at or above 3%. The crude P/R rate was 80% for patients with Grade III histology, 40% for those with brain and/or bone involvement (regardless of WHO tumor grade), and 20% for those with a proliferative index ≥ 3% (regardless of WHO tumor grade). The median proliferation index was significantly different between patients in whom treatment failed and those in whom it did not fail (11% and 1%, respectively).


In patients with atypical or malignant meningiomas, the presence of Grade III histology, brain and/or bone involvement, and a high mitotic index significantly predicted an increased risk of treatment failure despite combination therapy. These patients can be stratified into risk groups predicting P/R. Patients with high-risk features may benefit from more treatment and counseling than is typically offered currently.