Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Gustavo J. Almodovar-Mercado x
Clear All Modify Search
Full access

Walid I. Essayed, Harminder Singh, Gennaro Lapadula, Gustavo J. Almodovar-Mercado, Vijay K. Anand and Theodore H. Schwartz


Sporadic cases of endonasal intraaxial brainstem surgery have been reported in the recent literature. The authors endeavored to assess the feasibility and limitations of endonasal endoscopic surgery for approaching lesions in the ventral portion of the brainstem.


Five human cadaveric heads were used to assess the anatomy and to record various measurements. Extended transsphenoidal and transclival approaches were performed. After exposing the brainstem, white matter dissection was attempted through this endoscopic window, and additional key measurements were taken.


The rostral exposure of the brainstem was limited by the sella. The lateral limits of the exposure were the intracavernous carotid arteries at the level of the sellar floor, the intrapetrous carotid arteries at the level of the petrous apex, and the inferior petrosal sinuses toward the basion. Caudal extension necessitated partial resection of the anterior C-1 arch and the odontoid process. The midline pons and medulla were exposed in all specimens. Trigeminal nerves were barely visible without the use of angled endoscopes. Access to the peritrigeminal safe zone for gaining entry into the brainstem is medially limited by the pyramidal tract, with a mean lateral pyramidal distance (LPD) of 4.8 ± 0.8 mm. The mean interpyramidal distance was 3.6 ± 0.5 mm, and it progressively decreased toward the pontomedullary junction. The corticospinal tracts (CSTs) coursed from deep to superficial in a craniocaudal direction. The small caliber of the medulla with very superficial CSTs left no room for a safe ventral dissection. The mean pontobasilar midline index averaged at 0.44 ± 0.1.


Endoscopic endonasal approaches are best suited for pontine intraaxial tumors when they are close to the midline and strictly anterior to the CST, or for exophytic lesions. Approaching the medulla is anatomically feasible, but the superficiality of the eloquent tracts and interposed nerves limit the safe entry zones. Pituitary transposition after sellar opening is necessary to access the mesencephalon.

Full access

Harminder Singh, Sarang Rote, Ajit Jada, Evan D. Bander, Gustavo J. Almodovar-Mercado, Walid I. Essayed, Roger Härtl, Vijay K. Anand, Theodore H. Schwartz and Jeffrey P. Greenfield

The authors present 4 cases in which they used intraoperative CT (iCT) scanning to provide real-time image guidance during endonasal odontoid resection. While intraoperative CT has previously been used as a confirmatory test after resection, to the authors’ knowledge this is the first time it has been used to provide real-time image guidance during endonasal odontoid resection. The operating room setup, as well as the advantages and pitfalls of this approach, are discussed. A mobile intraoperative CT scanner was used in conjunction with real-time craniospinal neuronavigation in 4 patients who underwent endoscopic endonasal odontoidectomy for basilar invagination. All patients underwent a successful decompression. In 3 of the 4 patients, real-time intraoperative CT image guidance was instrumental in achieving a comprehensive decompression. In 3 (75%) cases in which the right nostril was the predominant working channel, there was a tendency for asymmetrical decompression toward the right side, meaning that residual bone was seen on the left, which was subsequently removed prior to completion of the surgery.

Endoscopic endonasal odontoid resection with real-time intraoperative image-guided CT scanning is feasible and provides accurate intraoperative localization of pathology, thereby increasing the chance of a complete odontoidectomy. For right-handed surgeons operating predominantly through the right nostril, special attention should be paid to the contralateral side of the resection, where there is often a tendency for residual pathology.