Search Results

You are looking at 1 - 10 of 44 items for

  • Author or Editor: Gregory M. Mundis x
Clear All Modify Search
Restricted access

Pooya Javidan, Nima Kabirian, Gregory M. Mundis Jr. and Behrooz A. Akbarnia

The authors report a case of progressive congenital kyphoscoliosis in which the patient, a boy, originally underwent combined anterior and instrumented posterior spinal fusion at the age of 7 years and 3 months. Early proximal junctional kyphosis and implant failure mandated proximal extension of implants with 2 new rods connected to the old caudad short rods. At the 3-year follow-up, clinical and CT assessment revealed a thoracolumbar pseudarthrosis for which the patient underwent a 2-stage procedure without complication. Recordings of somatosensory evoked potentials intraoperatively were normal. Twelve hours after surgery, his neurological status started to progressively deteriorate. The patient was brought to the operating room, and the initially achieved correction was reversed by an apex-only exposure of the 4-rod system. After surgery the patient started to show progressive improvement in his neurological function. A final myelography was performed and showed free passage of the dye without evidence of obstruction. Clinically, the patient continued to improve and at his 3-month follow-up had near-complete resolution of his neurological deficits. Findings on his physical examination were normal at the final 12-year follow-up.

Despite normal findings on intraoperative neuromonitoring, a delayed neurological deficit can occur after complex spine reconstruction. Preoperative risk assessment, surgical approach, and instrumentation deserve careful attention. Advantages of a 4-rod construct are discussed in this case.

Restricted access

Amir Ahmadian, Sean Verma, Gregory M. Mundis Jr., Rod J. Oskouian Jr., Donald A. Smith and Juan S. Uribe

Object

In this study the authors report on the clinical outcomes, safety, and efficacy of lateral retroperitoneal transpsoas minimally invasive surgery–lumbar interbody fusion (MIS-LIF) at the L4–5 disc space in patients with spondylolisthesis. This approach has become an increasingly popular means of fusion. Its most frequent complication is lumbar plexus injury. Reported complication rates at the L4–5 disc space vary widely in the literature, bringing into question the safety of MIS-LIF for the L4–5 region, especially in patients with spondylolisthesis.

Methods

The authors retrospectively reviewed prospectively acquired multicenter databases of patients with Grade I and II L4–5 spondylolisthesis who had undergone elective MIS-LIF between 2008 and 2011. Clinical follow-up had been scheduled for 1, 3, 6, 12, and 24 months postoperatively. Outcome measures included estimated blood loss, operative time, length of hospital stay, integrity of construct, complications, fusion rates, visual analog scale (VAS), Oswestry Disability Index (ODI), and 36-Item Short Form Health Survey (SF-36).

Results

Eighty-four patients with L4–5 MIS-LIF were identified, 31 of whom met the study inclusion criteria: 26 adults with Grade I and 5 adults with Grade II L4–5 spondylolisthesis who had undergone elective MIS-LIF and subsequent posterior percutaneous pedicle screw fixation without surgical manipulation of the posterior elements (laminectomy, foraminotomy, facetectomy). The study cohort consisted of 9 males (29%) and 22 females (71%) with an average age of 61.5 years. The mean total blood loss was 94 ml (range 20–250 ml). The mean hospital stay and follow-up were 3.5 days and 18.2 months, respectively. The average score on the ODI improved from 50.4 preoperatively to 30.9 at the last follow-up (p < 0.0001). The SF-36 score improved from 38.1 preoperatively to 59.5 at the last follow-up (p < 0.0001). The VAS score improved from 69.9 preoperatively to 38.7 at the last follow-up (p < 0.0001). No motor weakness or permanent deficits were documented in any patient. Correction of deformity did not have any neurological complications. All patients had improvement in anterolisthesis. Residual postoperative listhesis across cases was noted in 4 patients (12.9%). Transient anterior thigh numbness (Sensory Dermal Zone III) was noted in 22.5% of patients.

Conclusions

With its established surgical corridors through the retroperitoneum and psoas muscle, the MIS-LIF combined with posterior percutaneous pedicle screw fixation/reduction is a safe, reproducible, and effective technique for patients with symptomatic degenerative spondylolisthesis at the L4–5 vertebral segment.

Free access

Pooria Hosseini, Gregory M. Mundis Jr., Robert K. Eastlack, Ramin Bagheri, Enrique Vargas, Stacie Tran and Behrooz A. Akbarnia

OBJECTIVE

Sagittal malalignment decreases patients’ quality of life and may require surgical correction to achieve realignment goals. High-risk posterior-based osteotomy techniques are the current standard treatment for addressing sagittal malalignment. More recently, anterior lumbar interbody fusion, anterior column realignment (ALIF ACR) has been introduced as an alternative for correction of sagittal deformity. The objective of this paper was to report clinical and radiographic results for patients treated using the ALIF-ACR technique.

METHODS

A retrospective study of 39 patients treated with ALIF ACR was performed. Patient demographics, operative details, radiographic parameters, neurological assessments, outcome measures, and preoperative, postoperative, and mean 1-year follow-up complications were studied.

RESULTS

The patient population comprised 39 patients (27 females and 12 males) with a mean follow-up of 13.3 ± 4.7 months, mean age of 66.1 ± 11.6 years, and mean body mass index of 27.3 ± 6.2 kg/m2. The mean number of ALIF levels treated was 1.5 ± 0.5. Thirty-three (84.6%) of 39 patients underwent posterior spinal fixation and 33 (84.6%) of 39 underwent posterior column osteotomy, of which 20 (60.6%) of 33 procedures were performed at the level of the ALIF ACR. Pelvic tilt, sacral slope, and pelvic incidence were not statistically significantly different between the preoperative and postoperative periods and between the preoperative and 1-year follow-up periods (except for PT between the preoperative and 1-year follow-up, p = 0.018). Sagittal vertical axis, T-1 spinopelvic inclination, lumbar lordosis, pelvic incidence–lumbar lordosis mismatch, intradiscal angle, and motion segment angle all improved from the preoperative to postoperative period and the preoperative to 1-year follow-up (p < 0.05). The changes in motion segment angle and intradiscal angle achieved in the ALIF-ACR group without osteotomy compared with the ALIF-ACR group with osteotomy at the level of ACR were not statistically significant. Total visual analog score, Oswestry Disability Index, and Scoliosis Research Society–22 scores all improved from preoperative to postoperative and preoperative to 1-year follow-up. Fourteen patients (35.9%) experienced 26 complications (15 major and 11 minor). Eleven patients required reoperation. The most common complication was proximal junctional kyphosis (6/26 complications, 23%) followed by vertebral body/endplate fracture (3/26, 12%).

CONCLUSIONS

This study showed satisfactory radiographic and clinical outcomes at the 1-year follow-up. Proximal junctional kyphosis was the most common complication followed by fracture, complications that are commonly associated with sagittal realignment surgery and may not be mitigated by the anterior approach.

Restricted access

Juan S. Uribe, Donald A. Smith, Elias Dakwar, Ali A. Baaj, Gregory M. Mundis, Alexander W. L. Turner, G. Bryan Cornwall and Behrooz A. Akbarnia

Object

In the surgical treatment of spinal deformities, the importance of restoring lumbar lordosis is well recognized. Smith-Petersen osteotomies (SPOs) yield approximately 10° of lordosis per level, whereas pedicle subtraction osteotomies result in as much as 30° increased lumbar lordosis. Recently, selective release of the anterior longitudinal ligament (ALL) and placement of lordotic interbody grafts using the minimally invasive lateral retroperitoneal transpsoas approach (XLIF) has been performed as an attempt to increase lumbar lordosis while avoiding the morbidity of osteotomy. The objective of the present study was to measure the effect of the selective release of the ALL and varying degrees of lordotic implants placed using the XLIF approach on segmental lumbar lordosis in cadaveric specimens between L-1 and L-5.

Methods

Nine adult fresh-frozen cadaveric specimens were placed in the lateral decubitus position. Lateral radiographs were obtained at baseline and after 4 interventions at each level as follows: 1) placement of a standard 10° lordotic cage, 2) ALL release and placement of a 10° lordotic cage, 3) ALL release and placement of a 20° lordotic cage, and 4) ALL release and placement of a 30° lordotic cage. All four cages were implanted sequentially at each interbody level between L-1 and L-5. Before and after each intervention, segmental lumbar lordosis was measured in all specimens at each interbody level between L-1 and L-5 using the Cobb method on lateral radiography.

Results

The mean baseline segmental lordotic angles at L1–2, L2–3, L3–4, and L4–5 were –3.8°, 3.8°, 7.8°, and 22.6°, respectively. The mean lumbar lordosis was 29.4°. Compared with baseline, the mean postimplantation increase in segmental lordosis in all levels combined was 0.9° in Intervention 1 (10° cage without ALL release); 4.1° in Intervention 2 (ALL release with 10° cage); 9.5° in Intervention 3 (ALL release with 20° cage); and 11.6° in Intervention 4 (ALL release with 30° cage). Foraminal height in the same sequence of conditions increased by 6.3%, 4.6%, 8.8% and 10.4%, respectively, while central disc height increased by 16.1%, 22.3%, 52.0% and 66.7%, respectively. Following ALL release and placement of lordotic cages at all 4 lumbar levels, the average global lumbar lordosis increase from preoperative lordosis was 3.2° using 10° cages, 12.0° using 20° cages, and 20.3° using 30° cages. Global lumbar lordosis with the cages at 4 levels exhibited a negative correlation with preoperative global lordosis (10°, R = −0.756; 20°, −0.730; and 30°, R = −0.437).

Conclusions

Combined ALL release and placement of increasingly lordotic lateral interbody cages leads to progressive gains in segmental lordosis in the lumbar spine. Mean global lumbar lordosis similarly increased with increasingly lordotic cages, although the effect with a single cage could not be evaluated. Greater global lordosis was achieved with smaller preoperative lordosis. The mean maximum increase in segmental lordosis of 11.6° followed ALL release and placement of the 30° cage.

Free access

Kseniya Slobodyanyuk, Caroline E. Poorman, Justin S. Smith, Themistocles S. Protopsaltis, Richard Hostin, Shay Bess, Gregory M. Mundis Jr., Frank J. Schwab and Virginie Lafage

Object

The goal of this study was to determine the outcome and risk factors in patients with adult spinal deformity (ASD) who elected to receive nonoperative care.

Methods

In this retrospective study the authors reviewed a nonoperative branch of the International Spine Study Group database, derived from 10 sites across the US. Specific inclusion criteria included nonoperative treatment for ASD and the availability of Scoliosis Research Society (SRS)-22 scores and radiographic data at baseline (BL) and at 1-year (1Y) follow-up. Health-related quality of life measures were assessed using the SRS-22 and radiographic data. Changes in SRS-22 scores were evaluated by domain and expressed in number of minimum clinically important differences (MCIDs) gained or lost; BL and 1Y scores were also compared with age- and sex-matched normative references.

Results

One hundred eighty-nine patients (mean age 53 years, 86% female) met inclusion criteria. Pain was the domain with the largest offset for 43% of patients, followed by the Appearance (23%), Activity (18%), and Mental (15%) domains. On average, patients improved 0.3 MCID in Pain over 1Y, without changes in Activity or Appearance. Baseline scores significantly impacted 1Y outcomes, with up to 85% of patients in the mildest category of deformity being classified as < 1 MCID of normative reference at 1Y, versus 0% of patients with the most severe initial deformity. Baseline radiographic parameters did not correlate with outcome.

Conclusions

Patients who received nonoperative care are significantly more disabled than age- and sex-matched normative references. The likelihood for a patient to reach SRS scores similar to the normative reference at 1Y decreases with increased BL disability. Nonoperative treatment is a viable option for certain patients with ASD, and up to 24% of patients demonstrated significant improvement over 1Y with nonoperative care.

Free access

Michael Y. Wang, Praveen V. Mummaneni, Kai-Ming G. Fu, Neel Anand, David O. Okonkwo, Adam S. Kanter, Frank La Marca, Richard Fessler, Juan Uribe, Christopher I. Shaffrey, Virginie Lafage, Raqeeb M. Haque, Vedat Deviren and Gregory M. Mundis Jr.

Object

Minimally invasive surgery (MIS) options for the treatment of adult spinal deformity (ASD) have advanced significantly over the past decade. However, a wide array of options have been described as being MIS or less invasive. In this study the authors investigated a multiinstitutional cohort of patients with ASD who were treated with less invasive methods to determine the extent of deformity correction achieved.

Methods

This study was a retrospective review of multicenter prospectively collected data in 85 consecutive patients with ASD undergoing MIS surgery. Inclusion criteria were as follows: age older than 45 years; minimum 20° coronal lumbar Cobb angle; and 1 year of follow-up. Procedures were classified as follows: 1) stand-alone (n = 7); 2) circumferential MIS (n = 43); or 3) hybrid (n = 35).

Results

An average of 4.2 discs (range 3–7) were fused, with a mean follow-up duration of 26.1 months in this study. For the stand-alone group the preoperative Cobb range was 22°–51°, with 57% greater than 30° and 28.6% greater than 50°. The mean Cobb angle improved from 35.7° to 30°. A ceiling effect of 23° for curve correction was observed, regardless of preoperative curve severity. For the circumferential MIS group the preoperative Cobb range was 19°–62°, with 44% greater than 30° and 5% greater than 50°. The mean Cobb angle improved from 32° to 12°. A ceiling effect of 34° for curve correction was observed. For the hybrid group the preoperative Cobb range was 23°–82°, with 74% greater than 30° and 23% greater than 50°. The mean Cobb angle improved from 43° to 15°. A ceiling effect of 55° for curve correction was observed.

Conclusions

Specific procedures for treating ASD have particular limitations for scoliotic curve correction. Less invasive techniques were associated with a reduced ability to straighten the spine, particularly with advanced curves. These data can guide preoperative technique selection when treating patients with ASD.

Free access

The comprehensive anatomical spinal osteotomy and anterior column realignment classification

Presented at the 2018 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Juan S. Uribe, Frank Schwab, Gregory M. Mundis Jr., David S. Xu, Jacob Januszewski, Adam S. Kanter, David O. Okonkwo, Serena S. Hu, Deviren Vedat, Robert Eastlack, Pedro Berjano and Praveen V. Mummaneni

OBJECTIVE

Spinal osteotomies and anterior column realignment (ACR) are procedures that allow preservation or restoration of spine lordosis. Variations of these techniques enable different degrees of segmental, regional, and global sagittal realignment. The authors propose a comprehensive anatomical classification system for ACR and its variants based on the level of technical complexity and invasiveness. This serves as a common language and platform to standardize clinical and radiographic outcomes for the utilization of ACR.

METHODS

The proposed classification is based on 6 anatomical grades of ACR, including anterior longitudinal ligament (ALL) release, with varying degrees of posterior column release or osteotomies. Additionally, a surgical approach (anterior, lateral, or posterior) was added. Reliability of the classification was evaluated by an analysis of 16 clinical cases, rated twice by 14 different spine surgeons, and calculation of Fleiss kappa coefficients.

RESULTS

The 6 grades of ACR are as follows: grade A, ALL release with hyperlordotic cage, intact posterior elements; grade 1 (ACR + Schwab grade 1), additional resection of the inferior facet and joint capsule; grade 2 (ACR + Schwab grade 2), additional resection of both superior and inferior facets, interspinous ligament, ligamentum flavum, lamina, and spinous process; grade 3 (ACR + Schwab grade 3), additional adjacent-level 3-column osteotomy including pedicle subtraction osteotomy; grade 4 (ACR + Schwab grade 4), 2-level distal 3-column osteotomy including pedicle subtraction osteotomy and disc space resection; and grade 5 (ACR + Schwab grade 5), complete or partial removal of a vertebral body and both adjacent discs with or without posterior element resection. Intraobserver and interobserver reliability were 97% and 98%, respectively, across the 14-reviewer cohort.

CONCLUSIONS

The proposed anatomical realignment classification provides a consistent description of the various posterior and anterior column release/osteotomies. This reliability study confirmed that the classification is consistent and reproducible across a diverse group of spine surgeons.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Jensen K. Henry, Christopher P. Ames, Khaled Kebaish, Gregory M. Mundis, Richard Hostin, Munish C. Gupta, Oheneba Boachie-Adjei, Justin S. Smith, Robert A. Hart, Ibrahim Obeid, Bassel G. Diebo, Frank J. Schwab and Virginie Lafage

OBJECTIVE

Three-column osteotomy (3CO) is a demanding technique that is performed to correct sagittal spinal malalignment. However, the impact of the 3CO level on pelvic or truncal sagittal correction remains unclear. In this study, the authors assessed the impact of 3CO level and postoperative apex of lumbar lordosis on sagittal alignment correction, complications, and revisions.

METHODS

In this retrospective study of a multicenter spinal deformity database, radiographic data were analyzed at baseline and at 1- and 2-year follow-up to quantify spinopelvic alignment, apex of lordosis, and resection angle. The impact of 3CO level and apex level of lumbar lordosis on the sagittal correction was assessed. Logistic regression analyses were performed, controlling for cofounders, to investigate the effects of 3CO level and apex level on intraoperative and postoperative complications as well as on the need for subsequent revision surgery.

RESULTS

A total of 468 patients were included (mean age 60.8 years, mean body mass index 28.1 kg/m2); 70% of patients were female. The average 3CO resection angle was 25.1° and did not significantly differ with regard to 3CO level. There were no significant correlations between the 3CO level and amount of sagittal vertical axis or pelvic tilt correction. The postoperative apex level significantly correlated with greater correction of pelvic tilt (2° per more caudal level, R = −0.2, p = 0.006). Lower-level 3CO significantly correlated with revisions for pseudarthrosis (OR = 3.88, p = 0.001) and postoperative motor deficits (OR = 2.02, p = 0.026).

CONCLUSIONS

In this study, a more caudal lumbar 3CO level did not lead to greater sagittal vertical axis correction. The postoperative apex of lumbar lordosis significantly impacted pelvic tilt. 3CO levels that were more caudal were associated with more postoperative motor deficits and revisions.

Full access

Michael P. Kelly, Lukas P. Zebala, Han Jo Kim, Daniel M. Sciubba, Justin S. Smith, Christopher I. Shaffrey, Shay Bess, Eric Klineberg, Gregory Mundis Jr., Douglas Burton, Robert Hart, Alex Soroceanu, Frank Schwab, Virginie Lafage and International Spine Study Group

OBJECT

The goal of this study was to examine the effectiveness of preoperative autologous blood donation (PABD) in adult spinal deformity (ASD) surgery.

METHODS

Patients undergoing single-stay ASD reconstructions were identified in a multicenter database. Patients were divided into groups according to PABD (either PABD or NoPABD). Propensity weighting was used to create matched cohorts of PABD and NoPABD patients. Allogeneic (ALLO) exposure, autologous (AUTO) wastage (unused AUTO), and complication rates were compared between groups.

RESULTS

Four hundred twenty-eight patients were identified as meeting eligibility criteria. Sixty patients were treated with PABD, of whom 50 were matched to 50 patients who were not treated with PABD (NoPABD). Nearly one-third of patients in the PABD group (18/60, 30%) did not receive any autologous transfusion and donated blood was wasted. In 6 of these cases (6/60, 10%), patients received ALLO blood transfusions without AUTO. In 9 cases (9/60, 15%), patients received ALLO and AUTO blood transfusions. Overall rates of transfusion of any type were similar between groups (PABD 70% [42/60], NoPABD 75% [275/368], p = 0.438). Major and minor in-hospital complications were similar between groups (Major PABD 10% [6/60], NoPABD 12% [43/368], p = 0.537; Minor PABD 30% [18/60], NoPABD 24% [87/368], p = 0.499). When controlling for potential confounders, PABD patients were more likely to receive some transfusion (OR 15.1, 95% CI 2.1-106.7). No relationship between PABD and ALLO blood exposure was observed, however, refuting the concept that PABD is protective against ALLO blood exposure. In the matched cohorts, PABD patients were more likely to sustain a major perioperative cardiac complication (PABD 8/50 [16%], NoPABD 1/50 [2%], p = 0.046). No differences in rates of infection or wound-healing complications were observed between cohorts.

CONCLUSIONS

Preoperative autologous blood donation was associated with a higher probability of perioperative transfusions of any type in patients with ASD. No protective effect of PABD against ALLO blood exposure was observed, and no risk of perioperative infectious complications was observed in patients exposed to ALLO blood only. The benefit of PABD in patients with ASD remains undefined.

Full access

Alexander A. Theologis, Gregory M. Mundis Jr., Stacie Nguyen, David O. Okonkwo, Praveen V. Mummaneni, Justin S. Smith, Christopher I. Shaffrey, Richard Fessler, Shay Bess, Frank Schwab, Bassel G. Diebo, Douglas Burton, Robert Hart, Vedat Deviren and Christopher Ames

OBJECTIVE

The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD).

METHODS

Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5–S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5–S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed.

RESULTS

Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes.

CONCLUSIONS

Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5–S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5–S1 interbody fusion.