Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Graham Fieggen x
Clear All Modify Search
Full access

Anthony A. Figaji, Eugene Zwane, A. Graham Fieggen, Jonathan C. Peter and Peter D. Leroux

Object

The goal of this paper was to examine the relationship between methods of acute clinical assessment and measures of secondary cerebral insults in severe traumatic brain injury in children.

Methods

Patients who underwent intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain oxygenation (PbtO2) monitoring and who had an initial Glasgow Coma Scale score, Pediatric Trauma Score, Pediatric Index of Mortality 2 score, and CT classification were evaluated. The relationship between these acute clinical scores and secondary cerebral insult measures, including ICP, CPP, PbtO2, and systemic hypoxia were evaluated using univariate and multivariate analysis.

Results

The authors found significant associations between individual acute clinical scores and select physiological markers of secondary injury. However, there was a large amount of variability in these results, and none of the scores evaluated predicted each and every insult. Furthermore, a number of physiological measures were not predicted by any of the scores.

Conclusions

Although they may guide initial treatment, grading systems used to classify initial injury severity appear to have a limited value in predicting who is at risk for secondary cerebral insults.

Restricted access

Anthony A. Figaji, Eugene Zwane, A. Graham Fieggen, Andrew C. Argent, Peter D. Le Roux, Peter Siesjo and Jonathan C. Peter

Object

Cerebral pressure autoregulation is an important neuroprotective mechanism that stabilizes cerebral blood flow when blood pressure (BP) changes. In this study the authors examined the association between autoregulation and clinical factors, BP, intracranial pressure (ICP), brain tissue oxygen tension (PbtO2), and outcome after pediatric severe traumatic brain injury (TBI). In particular we examined how the status of autoregulation influenced the effect of BP changes on ICP and PbtO2.

Methods

In this prospective observational study, 52 autoregulation tests were performed in 24 patients with severe TBI. The patients had a mean age of 6.3 ± 3.2 years, and a postresuscitation Glasgow Coma Scale score of 6 (range 3–8). All patients underwent continuous ICP and PbtO2 monitoring, and transcranial Doppler ultrasonography was used to examine the autoregulatory index (ARI) based on blood flow velocity of the middle cerebral artery after increasing mean arterial pressure by 20% of the baseline value. Impaired autoregulation was defined as an ARI < 0.4 and intact autoregulation as an ARI ≥ 0.4. The relationships between autoregulation (measured as both a continuous and dichotomous variable), outcome, and clinical and physiological variables were examined using multiple logistic regression analysis.

Results

Autoregulation was impaired (ARI < 0.4) in 29% of patients (7 patients). The initial Glasgow Coma Scale score was significantly associated with the ARI (p = 0.02, r = 0.32) but no other clinical factors were associated with autoregulation status. Baseline values at the time of testing for ICP, PbtO2, the ratio of PbtO2/PaO2, mean arterial pressure, and middle cerebral artery blood flow velocity were similar in the patients with impaired or intact autoregulation. There was an inverse relationship between ARI (continuous and dichotomous) with a change in ICP (continuous ARI, p = 0.005; dichotomous ARI, p = 0.02); that is, ICP increased with the BP increase when ARI was low (weak autoregulation). The ARI (continuous and dichotomous) was also inversely associated with a change in PbtO2 (continuous ARI, p = 0.002; dichotomous ARI, p = 0.02). The PbtO2 increased when BP was increased in most patients, even when the ARI was relatively high (stronger autoregulation), but the magnitude of this response was still associated with the ARI. There was no relationship between the ARI and outcome.

Conclusions

These data demonstrate the influence of the strength of autoregulation on the response of ICP and PbtO2 to BP changes and the variability of this response between individuals. The findings suggest that autoregulation testing may assist clinical decision-making in pediatric severe TBI and help better define optimal BP or cerebral perfusion pressure targets for individual patients.

Restricted access

Nelleke G. Langerak, Robert P. Lamberts, A. Graham Fieggen, Jonathan C. Peter, Lize van der Merwe, Warwick J. Peacock and Christopher L. Vaughan

Object

Selective dorsal rhizotomy (SDR) has been widely performed for the reduction of spasticity in patients with cerebral palsy during the past 2 decades. The objective of this study was to determine whether the surgery has yielded long-term functional benefits for these patients.

Methods

The authors present results from a prospective 20-year follow-up study of locomotor function in 13 patients who underwent an SDR in 1985. For comparison, we also present gait data for 48 age-matched healthy controls (12 at each of 4 time points). Patients were studied preoperatively and then at 1, 3, 10, and 20 years after surgery. Study participants were recorded in the sagittal plane while walking using a digital video camera, and 6 standard gait parameters were measured.

Results

In this group of patients 20 years after surgery, knee range of motion (ROM) was on average 12° greater than preoperative values (p < 0.001). Hip ROM before surgery was no different from that in the healthy control group. This parameter increased markedly immediately after surgery (p < 0.001) but had returned to normal after 20 years. The knee and hip midrange values—a measure of the degree of “collapse” due to muscle weakness after surgery—had returned to preoperative levels after 20 years, although they were respectively 11 and 8° greater than those in healthy controls. Both temporal-distance parameters (dimensionless cadence and dimensionless step length) were significantly greater at 20 years than preoperative values (cadence, p = 0.003; step length, p = 0.02), leading to improved walking speed.

Conclusions

Twenty years after undergoing SDR, our patients showed improved locomotor function compared with their preoperative status.

Free access

Michael C. Dewan, Abbas Rattani, Graham Fieggen, Miguel A. Arraez, Franco Servadei, Frederick A. Boop, Walter D. Johnson, Benjamin C. Warf and Kee B. Park

OBJECTIVE

Worldwide disparities in the provision of surgical care result in otherwise preventable disability and death. There is a growing need to quantify the global burden of neurosurgical disease specifically, and the workforce necessary to meet this demand.

METHODS

Results from a multinational collaborative effort to describe the global neurosurgical burden were aggregated and summarized. First, country registries, third-party modeled data, and meta-analyzed published data were combined to generate incidence and volume figures for 10 common neurosurgical conditions. Next, a global mapping survey was performed to identify the number and location of neurosurgeons in each country. Finally, a practitioner survey was conducted to quantify the proportion of disease requiring surgery, as well as the median number of neurosurgical cases per annum. The neurosurgical case deficit was calculated as the difference between the volume of essential neurosurgical cases and the existing neurosurgical workforce capacity.

RESULTS

Every year, an estimated 22.6 million patients suffer from neurological disorders or injuries that warrant the expertise of a neurosurgeon, of whom 13.8 million require surgery. Traumatic brain injury, stroke-related conditions, tumors, hydrocephalus, and epilepsy constitute the majority of essential neurosurgical care worldwide. Approximately 23,300 additional neurosurgeons are needed to address more than 5 million essential neurosurgical cases—all in low- and middle-income countries—that go unmet each year. There exists a gross disparity in the allocation of the surgical workforce, leaving large geographic treatment gaps, particularly in Africa and Southeast Asia.

CONCLUSIONS

Each year, more than 5 million individuals suffering from treatable neurosurgical conditions will never undergo therapeutic surgical intervention. Populations in Africa and Southeast Asia, where the proportion of neurosurgeons to neurosurgical disease is critically low, are especially at risk. Increasing access to essential neurosurgical care in low- and middle-income countries via neurosurgical workforce expansion as part of surgical system strengthening is necessary to prevent severe disability and death for millions with neurological disease.

Restricted access

Michael C. Dewan, Abbas Rattani, Rania Mekary, Laurence J. Glancz, Ismaeel Yunusa, Ronnie E. Baticulon, Graham Fieggen, John C. Wellons III, Kee B. Park and Benjamin C. Warf

OBJECTIVE

Hydrocephalus is one of the most common brain disorders, yet a reliable assessment of the global burden of disease is lacking. The authors sought a reliable estimate of the prevalence and annual incidence of hydrocephalus worldwide.

METHODS

The authors performed a systematic literature review and meta-analysis to estimate the incidence of congenital hydrocephalus by WHO region and World Bank income level using the MEDLINE/PubMed and Cochrane Database of Systematic Reviews databases. A global estimate of pediatric hydrocephalus was obtained by adding acquired forms of childhood hydrocephalus to the baseline congenital figures using neural tube defect (NTD) registry data and known proportions of posthemorrhagic and postinfectious cases. Adult forms of hydrocephalus were also examined qualitatively.

RESULTS

Seventy-eight articles were included from the systematic review, representative of all WHO regions and each income level. The pooled incidence of congenital hydrocephalus was highest in Africa and Latin America (145 and 316 per 100,000 births, respectively) and lowest in the United States/Canada (68 per 100,000 births) (p for interaction < 0.1). The incidence was higher in low- and middle-income countries (123 per 100,000 births; 95% CI 98–152 births) than in high-income countries (79 per 100,000 births; 95% CI 68–90 births) (p for interaction < 0.01). While likely representing an underestimate, this model predicts that each year, nearly 400,000 new cases of pediatric hydrocephalus will develop worldwide. The greatest burden of disease falls on the African, Latin American, and Southeast Asian regions, accounting for three-quarters of the total volume of new cases. The high crude birth rate, greater proportion of patients with postinfectious etiology, and higher incidence of NTDs all contribute to a case volume in low- and middle-income countries that outweighs that in high-income countries by more than 20-fold. Global estimates of adult and other forms of acquired hydrocephalus are lacking.

CONCLUSIONS

For the first time in a global model, the annual incidence of pediatric hydrocephalus is estimated. Low- and middle-income countries incur the greatest burden of disease, particularly those within the African and Latin American regions. Reliable incidence and burden figures for adult forms of hydrocephalus are absent in the literature and warrant specific investigation. A global effort to address hydrocephalus in regions with the greatest demand is imperative to reduce disease incidence, morbidity, mortality, and disparities of access to treatment.

Free access

Nelleke G. Langerak, Christopher L. Vaughan, Jonathan C. Peter, A. Graham Fieggen and Warwick J. Peacock

Free access

Dagoberto Estevez-Ordonez, Matthew C. Davis, Betsy Hopson, MSHA, Anastasia Arynchyna, Brandon G. Rocque, Graham Fieggen, Gail Rosseau, Godfrey Oakley, MSPM and Jeffrey P. Blount

Neural tube defects (NTDs) are one of the greatest causes of childhood mortality and disability-adjusted life years worldwide. Global prevalence at birth is approximately 18.6 per 10,000 live births, with more than 300,000 infants with NTDs born every year. Substantial strides have been made in understanding the genetics, pathophysiology, and surgical treatment of NTDs, yet the natural history remains one of high morbidity and profound impairment of quality of life. Direct and indirect costs of care are enormous, which ensures profound inequities and disparities in the burden of disease in countries of low and moderate resources. All indices of disease burden are higher for NTDs in developing countries. The great tragedy is that the majority of NTDs can be prevented with folate fortification of commercially produced food. Unequivocal evidence of the effectiveness of folate to reduce the incidence of NTDs has existed for more than 25 years. Yet, the most comprehensive surveys of effectiveness of implementation strategies show that more than 100 countries fail to fortify, and consequently only 13% of folate-preventable spina bifida is actually prevented. Neurosurgeons harbor a disproportionate, central, and fundamental role in the management of NTDs and enjoy high standing in society. No organized group in medicine can speak as authoritatively or convincingly. As a result, neurosurgeons and organized neurosurgery harbor disproportionate potential to advocate for more comprehensive folate fortification, and thereby prevent the most common and severe birth defect to impact the human nervous system. Assertive, proactive, informed advocacy for folate fortification should be a central and integral part of the neurosurgical approach to NTDs. Only by making the prevention of dysraphism a priority can we best address the inequities often observed worldwide.

Restricted access

Anthony A. Figaji, A. Graham Fieggen and Jonathan C. Peter