Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: Gerald Grant x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Ben Waldau, Gerald Grant, and Herbert Fuchs

✓The authors present the case of a child with an untreated lipomyelomeningocele who developed an acquired Chiari malformation Type I (CM-I) with a large syrinx over the course of 3 years. To the best of the authors' knowledge, this is the first report to document a case in which an acquired CM-I evolved in a patient with an untreated tethered cord.

Restricted access

Gerald A. Grant, Donald Farrell, and Daniel L. Silbergeld

✓ The neurosurgical management of intrinsic brain tumors and brain metastases mandates maximum resection with preservation of functional cortex. There have been previous reports on the use of cortical somatosensory evoked potentials (SSEPs) for localization of functional cortex prior to resection. The identification of rolandic cortex with the use of intraoperative SSEP monitoring enables the neurosurgeon to tailor the surgery to achieve a greater extent of resection while minimizing the risk of morbidity. The use of continuous SSEP monitoring during resection to provide an ongoing functional assessment of somatosensory cortex has not been reported. This powerful technique is illustrated using four case examples.

Restricted access

Mohan R. Sharma, David W. Newell, and Gerald A. Grant

Free access

James Pan, Ian D. Connolly, Sean Dangelmajer, James Kintzing, Allen L. Ho, and Gerald Grant

Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

Free access

Terry C. Burns, Ahmed J. Awad, Matthew D. Li, and Gerald A. Grant

Brain radiation is a fundamental tool in neurooncology to improve local tumor control, but it leads to profound and progressive impairments in cognitive function. Increased attention to quality of life in neurooncology has accelerated efforts to understand and ameliorate radiation-induced cognitive sequelae. Such progress has coincided with a new understanding of the role of CNS progenitor cell populations in normal cognition and in their potential utility for the treatment of neurological diseases. The irradiated brain exhibits a host of biochemical and cellular derangements, including loss of endogenous neurogenesis, demyelination, and ablation of endogenous oligodendrocyte progenitor cells. These changes, in combination with a state of chronic neuroinflammation, underlie impairments in memory, attention, executive function, and acquisition of motor and language skills. Animal models of radiation-induced brain injury have demonstrated a robust capacity of both neural stem cells and oligodendrocyte progenitor cells to restore cognitive function after brain irradiation, likely through a combination of cell replacement and trophic effects. Oligodendrocyte progenitor cells exhibit a remarkable capacity to migrate, integrate, and functionally remyelinate damaged white matter tracts in a variety of preclinical models. The authors here critically address the opportunities and challenges in translating regenerative cell therapies from rodents to humans. Although valiant attempts to translate neuroprotective therapies in recent decades have almost uniformly failed, the authors make the case that harnessing human radiation-induced brain injury as a scientific tool represents a unique opportunity to both successfully translate a neuroregenerative therapy and to acquire tools to facilitate future restorative therapies for human traumatic and degenerative diseases of the central nervous system.

Free access

Tej D. Azad, James Pan, Ian D. Connolly, Austin Remington, Christy M. Wilson, and Gerald A. Grant

Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB's physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.

Full access

Derek Yecies, Paul Graham Fisher, Samuel Cheshier, Michael Edwards, and Gerald Grant


Primarily metastatic juvenile pilocytic astrocytoma (JPA) is rare, likely representing 2%–3% of all cases of JPA. Due to the rarity of primarily metastatic JPA, there is currently no standard treatment paradigm and the long-term outcomes are not fully known. The goal of this case series was to add to the current understanding of this disease process.


The authors searched a comprehensive database of pediatric patients with brain and spinal cord tumors treated at Lucile Packard Children’s Hospital from 1997 to 2016 and identified 5 patients with primarily metastatic JPA. A retrospective chart review was performed and details of the patients’ treatment and clinical course were recorded for further analysis.


For the 5 patients with primarily metastatic JPA, the mean follow-up period was 12.3 years. All patients in our series had biopsies or subtotal resections and upfront treatment. Three patients were treated with chemotherapy alone, one was treated with chemotherapy and radiotherapy, and one was treated with radiotherapy alone. Four patients had stable disease after initial treatment, and one patient had multiple episodes of progressive disease but underwent successful salvage therapy and has had stable disease for 19 years. One patient died of an intracerebral hemorrhage 10 years following initial radiation treatment believed to be secondary to radiation vasculopathy.


Evaluation of the entire neuraxis should be performed in all instances of initial JPA diagnosis to properly assess for primarily metastatic disease. Many patients with primarily metastatic JPA will have stable disease after upfront treatment, although the higher rate of stable disease found in this series relative to other reports is likely secondary to the small sample size.

Restricted access

Srinivasan Mukundan, Herbert Fuchs, Michael J. Alexander, and Gerald A. Grant

✓The authors report the first clinical use of 3-tesla dynamic contrast-enhanced magnetic resonance (MR) angiography for the diagnosis of a vascular malformation in a pediatric patient. The supply and drainage of an arteriovenous malformation were accurately demonstrated on MR angiography, which was performed without sedating the patient. This lesion was confirmed on catheter angiography, and definitive treatment via embolization was undertaken in a single session. The patient's therapeutic response will be followed with surveillance dynamic MR imaging.

Full access

Morgan Bliss, Gerald Grant, Ethan Tittler, Tina Loven, Kristen W. Yeom, and Douglas Sidell

In contrast to more common nasal and cervical lesions, the frontotemporal pit is a rarely encountered lesion that is often associated with a dermoid and may track intracranially. Due to delays in diagnosis, the propensity to spread intracranially, and the risk of infection, awareness of these lesions and appropriate diagnosis and management are important. The authors present 2 cases of frontotemporal pits from a single institution. Epidemiology, presentation, and management recommendations are discussed.

Open access

Ahmed Mohyeldin, Peter Hwang, Gerald A. Grant, and Juan C. Fernandez-Miranda

Pediatric craniopharyngiomas that were once thought to be inoperable or considered only for salvage medical therapy are now being reconsidered for aggressive surgical resection via endoscopic endonasal approaches. Here we review the operative video case of an 11-year-old with a giant complex craniopharyngioma that was resected via an endoscopic endonasal approach. Due to the extent of tumor burden near the basilar apex, a transclival approach was necessary. To accomplish this, a wide sphenoidotomy, posterior ethmoidectomy, and resection of the middle turbinate were necessary to create enough working space for the resection. We also highlight several key innovations in pediatric endoscopic endonasal surgery management and underscore a multidisciplinary approach that allows for the safe and successful treatment of these lesions. Our multidisciplinary team involves an experienced fellowship-trained endoscopic skull base surgeon and otolaryngologist, as well as a pediatric neurosurgeon, pediatric endocrinologist, pediatric anesthesiologist, and pediatric intensivists who play important roles in the preoperative, intraoperative, and postoperative phases of care of the patient. Finally, we discuss critical surgical decision points including pituitary transposition, which has a lot of conceptual appeal when it is anatomically feasible but unfortunately, in our experience, has low functional preservation rates. Initially, we always aim to utilize pituitary transposition for tuberoinfundibular craniopharyngiomas, and once the relationship between the tumor and the stalk is determined, a decision on whether to preserve or sacrifice the stalk and pituitary gland is made. In this particular case, there was a salvageable stalk and the transposition was performed knowing that the chances for functional preservation were low.

The video can be found here: