Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Gennaro Lapadula x
Clear All Modify Search
Restricted access

Walid I. Essayed, Harminder Singh, Gennaro Lapadula, Gustavo J. Almodovar-Mercado, Vijay K. Anand and Theodore H. Schwartz

OBJECTIVE

Sporadic cases of endonasal intraaxial brainstem surgery have been reported in the recent literature. The authors endeavored to assess the feasibility and limitations of endonasal endoscopic surgery for approaching lesions in the ventral portion of the brainstem.

METHODS

Five human cadaveric heads were used to assess the anatomy and to record various measurements. Extended transsphenoidal and transclival approaches were performed. After exposing the brainstem, white matter dissection was attempted through this endoscopic window, and additional key measurements were taken.

RESULTS

The rostral exposure of the brainstem was limited by the sella. The lateral limits of the exposure were the intracavernous carotid arteries at the level of the sellar floor, the intrapetrous carotid arteries at the level of the petrous apex, and the inferior petrosal sinuses toward the basion. Caudal extension necessitated partial resection of the anterior C-1 arch and the odontoid process. The midline pons and medulla were exposed in all specimens. Trigeminal nerves were barely visible without the use of angled endoscopes. Access to the peritrigeminal safe zone for gaining entry into the brainstem is medially limited by the pyramidal tract, with a mean lateral pyramidal distance (LPD) of 4.8 ± 0.8 mm. The mean interpyramidal distance was 3.6 ± 0.5 mm, and it progressively decreased toward the pontomedullary junction. The corticospinal tracts (CSTs) coursed from deep to superficial in a craniocaudal direction. The small caliber of the medulla with very superficial CSTs left no room for a safe ventral dissection. The mean pontobasilar midline index averaged at 0.44 ± 0.1.

CONCLUSIONS

Endoscopic endonasal approaches are best suited for pontine intraaxial tumors when they are close to the midline and strictly anterior to the CST, or for exophytic lesions. Approaching the medulla is anatomically feasible, but the superficiality of the eloquent tracts and interposed nerves limit the safe entry zones. Pituitary transposition after sellar opening is necessary to access the mesencephalon.

Restricted access

Michael A. Cohen, Alexander I. Evins, Gennaro Lapadula, Leopold Arko, Philip E. Stieg and Antonio Bernardo

OBJECTIVE

The rectus capitis lateralis (RCL) is a small posterior cervical muscle that originates from the transverse process of C-1 and inserts onto the jugular process of the occipital bone. The authors describe the RCL and its anatomical relationships, and discuss its utility as a surgical landmark for safe exposure of the jugular foramen in extended or combined skull base approaches. In addition, the condylar triangle is defined as a landmark for localizing the vertebral artery (VA) and occipital condyle.

METHODS

Four cadaveric heads (8 sides) were used to perform far-lateral, extended far-lateral, combined transmastoid infralabyrinthine transcervical, and combined far-lateral transmastoid infralabyrinthine transcervical approaches to the jugular foramen. On each side, the RCL was dissected, and its musculoskeletal, vascular, and neural relationships were examined.

RESULTS

The RCL lies directly posterior to the internal jugular vein—only separated by the carotid sheath and in some cases cranial nerve (CN) XI. The occipital artery travels between the RCL and the posterior belly of the digastric muscle, and the VA passes medially to the RCL as it exits the C-1 foramen transversarium and courses posteriorly toward its dural entrance. CNs IX–XI exit the jugular foramen directly anterior to the RCL. To provide a landmark for identification of the occipital condyle and the extradural VA without exposure of the suboccipital triangle, the authors propose and define a condylar triangle that is formed by the RCL anteriorly, the superior oblique posteriorly, and the occipital bone superiorly.

CONCLUSIONS

The RCL is an important surgical landmark that allows for early identification of the critical neurovascular structures when approaching the jugular foramen, especially in the presence of anatomically displacing tumors. The condylar triangle is a novel and useful landmark for identifying the terminal segment of the hypoglossal canal as well as the superior aspect of the VA at its exit from the C-1 foramen transversarium, without performing a far-lateral exposure.

Restricted access

Sukhdeep S. Jhawar, Maximiliano Nunez, Paolo Pacca, Daniel Seclen Voscoboinik and Huy Q. Truong