Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Gavin P. Dunn x
Clear All Modify Search
Full access

Pankaj K. Agarwalla, Gavin P. Dunn and Edward R. Laws

The contemporary management of projectile head injuries owes much to the lessons neurosurgeons have distilled from their experiences in war. Through early investigation and an increasingly detailed account of wartime clinical experience, neurosurgeons—including the field's early giants—began to gain a greater understanding not only of intracranial missile pathophysiology but also of appropriate management. In this paper, the authors trace the development of the principles of managing intracranial projectile injury from the Crimean War in the 19th century through the Vietnam War to provide a context that frames a summary of today's core management principles.

Free access

Gavin P. Dunn, Ovidiu C. Andronesi and Daniel P. Cahill

The characterization of the genomic alterations across all human cancers is changing the way that malignant disease is defined and treated. This paradigm is extending to glioma, where the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioma and other IDH-mutant cancers. The IDH1 mutations are present in the vast majority of low-grade gliomas and secondary glioblastomas. Rapidly emerging work on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome, transcriptional programs, hypoxia-inducible factor biology, and development. In the brief time since its discovery, knowledge of the IDH mutation status has had significant translational implications, and diagnostic tools are being used to monitor its expression and function. The concept of IDH1-mutant versus IDH1-wild type will become a critical early distinction in diagnostic and treatment algorithms.

Free access

Pamela S. Jones, Gavin P. Dunn, Fred G. Barker II, William T. Curry, Fred H. Hochberg and Daniel P. Cahill

Object

The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence.

Methods

On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development.

Results

The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment.

Conclusions

The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.

Restricted access

Gavin P. Dunn, Konstantinos Spiliopoulos, Scott R. Plotkin, Francis J. Hornicek, David C. Harmon, Thomas F. Delaney and Ziv Williams

Object

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that often arise from major peripheral nerves. Approximately half of MPNSTs arise in patients with neurofibromatosis Type 1 (NF1) who, in comparison with patients without NF1, present at younger ages and with larger tumors that are commonly associated with extensive plexiform neurofibromas. These tumors therefore pose a particularly difficult treatment challenge because of the morbidity often associated with attempted gross-total resection (GTR). Here, the authors aim to examine what role the extent of resection and other covariates play in the long-term survival of patients with NF1 in the setting of MPNST.

Methods

The authors retrospectively reviewed the records of 23 adult patients with NF1 who underwent surgery for MPNSTs at their institution between 1991 and 2008. The primary end points of the study were mortality, local recurrence, and metastasis. Kaplan-Meier survival curves were evaluated for all patients. Differences for each of the primary end points were evaluated based on cause-specific covariates, which included tiered tumor size, tumor location, grade, resection margin status, postoperative weakness, and use of chemotherapy and radiation therapy. Multivariate analysis was performed using Cox proportional hazards models.

Results

Gross-total resection (p = 0.01) and surgical margin status (p = 0.034) had a statistically important role in prolonging overall survival in patients with NF1 by univariate analysis. When tumor size, location, grade, postoperative weakness, and radiation therapy were also taken into account using multivariate analysis, GTR continued to be a significant prognostic factor (p = 0.035).

Conclusions

These findings suggest that GTR offers significant long-term benefit on survival in patients with NF1. Benefit on survival occurred independently of all other covariates, suggesting that complete resection should be the principal goal of treatment in this patient population.

Full access

Wenya Linda Bi, Malak Abedalthagafi, Peleg Horowitz, Pankaj K. Agarwalla, Yu Mei, Ayal A. Aizer, Ryan Brewster, Gavin P. Dunn, Ossama Al-Mefty, Brian M. Alexander, Sandro Santagata, Rameen Beroukhim and Ian F. Dunn

Meningiomas are the most common primary intracranial neoplasms in adults. Current histopathological grading schemes do not consistently predict their natural history. Classic cytogenetic studies have disclosed a progressive course of chromosomal aberrations, especially in high-grade meningiomas. Furthermore, the recent application of unbiased next-generation sequencing approaches has implicated several novel genes whose mutations underlie a substantial percentage of meningiomas. These insights may serve to craft a molecular taxonomy for meningiomas and highlight putative therapeutic targets in a new era of rational biology-informed precision medicine.

Free access

Ammar H. Hawasli, Albert H. Kim, Gavin P. Dunn, David D. Tran and Eric C. Leuthardt

Evolving research has demonstrated that surgical cytoreduction of a high-grade glial neoplasm is an important factor in improving the prognosis of these difficult tumors. Recent advances in intraoperative imaging have spurred the use of stereotactic laser ablation (laser interstitial thermal therapy [LITT]) for intracranial lesions. Among other targets, laser ablation has been used in the focal treatment of high-grade gliomas (HGGs). The revived application of laser ablation for gliomas parallels major advancements in intraoperative adjuvants and groundbreaking molecular advances in neuro-oncology. The authors review the research on stereotactic LITT for the treatment of HGGs and provide a potential management algorithm for HGGs that incorporates LITT in clinical practice.

Free access

Diane J. Aum, David H. Kim, Thomas L. Beaumont, Eric C. Leuthardt, Gavin P. Dunn and Albert H. Kim

There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed “glioblastoma cancer stem cells” or “tumor-initiating cells” has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

Restricted access

Nicholas M. Barbaro

Restricted access

Amar S. Shah, Peter T. Sylvester, Alexander T. Yahanda, Ananth K. Vellimana, Gavin P. Dunn, John Evans, Keith M. Rich, Joshua L. Dowling, Eric C. Leuthardt, Ralph G. Dacey, Albert H. Kim, Robert L. Grubb, Gregory J. Zipfel, Mark Oswood, Randy L. Jensen, Garnette R. Sutherland, Daniel P. Cahill, Steven R. Abram, John Honeycutt, Mitesh Shah, Yu Tao and Michael R. Chicoine

OBJECTIVE

Intraoperative MRI (iMRI) is used in the surgical treatment of glioblastoma, with uncertain effects on outcomes. The authors evaluated the impact of iMRI on extent of resection (EOR) and overall survival (OS) while controlling for other known and suspected predictors.

METHODS

A multicenter retrospective cohort of 640 adult patients with newly diagnosed supratentorial glioblastoma who underwent resection was evaluated. iMRI was performed in 332/640 cases (51.9%). Reviews of MRI features and tumor volumetric analysis were performed on a subsample of cases (n = 286; 110 non-iMRI, 176 iMRI) from a single institution.

RESULTS

The median age was 60.0 years (mean 58.5 years, range 20.5–86.3 years). The median OS was 17.0 months (95% CI 15.6–18.4 months). Gross-total resection (GTR) was achieved in 403/640 cases (63.0%). Kaplan-Meier analysis of 286 cases with volumetric analysis for EOR (grouped into 100%, 95%–99%, 80%–94%, and 50%–79%) showed longer OS for 100% EOR compared to all other groups (p < 0.01). Additional resection after iMRI was performed in 104/122 cases (85.2%) with initial subtotal resection (STR), leading to a 6.3% mean increase in EOR and a 2.2-cm3 mean decrease in tumor volume. For iMRI cases with volumetric analysis, the GTR rate increased from 54/176 (30.7%) on iMRI to 126/176 (71.5%) postoperatively. The EOR was significantly higher in the iMRI group for intended GTR and STR groups (p = 0.02 and p < 0.01, respectively). Predictors of GTR on multivariate logistic regression included iMRI use and intended GTR. Predictors of shorter OS on multivariate Cox regression included older age, STR, isocitrate dehydrogenase 1 (IDH1) wild type, no O 6-methylguanine DNA methyltransferase (MGMT) methylation, and no Stupp therapy. iMRI was a significant predictor of OS on univariate (HR 0.82, 95% CI 0.69–0.98; p = 0.03) but not multivariate analyses. Use of iMRI was not associated with an increased rate of new permanent neurological deficits.

CONCLUSIONS

GTR increased OS for patients with newly diagnosed glioblastoma after adjusting for other prognostic factors. iMRI increased EOR and GTR rate and was a significant predictor of GTR on multivariate analysis; however, iMRI was not an independent predictor of OS. Additional supporting evidence is needed to determine the clinical benefit of iMRI in the management of glioblastoma.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010