Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Gautam Nayar x
Clear All Modify Search
Restricted access

Jakub Godzik, George M. Mastorakos, Gautam Nayar, William D. Hunter and Luis M. Tumialán

OBJECTIVE

The level of radiation awareness by surgeons and residents in spinal surgery does not match the ubiquity of fluoroscopy in operating rooms in the United States. The present method of monitoring radiation exposure may contribute to the current deficiency in radiation awareness. Current dosimeters involve a considerable lag from the time that the surgical team is exposed to radiation to the time that they are provided with that exposure data. The objective of the current study was to assess the feasibility of monitoring radiation exposure in operating room personnel during lateral transpsoas lumbar interbody fusion (LLIF) and minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) procedures by using a wearable personal device with real-time feedback.

METHODS

Operating room staff participating in minimally invasive surgical procedures under a single surgeon during a 6-month period were prospectively enrolled in this study. All radiation dose exposures were recorded for each member of the surgical team (surgeon, assistant surgeon, scrub nurse, and circulating nurse) using a personal dosimeter (DoseAware). Radiation doses were recorded in microsieverts (μSv). Comparisons between groups were made using ANOVA with the Tukey post hoc test and Student t-test.

RESULTS

Thirty-nine patients underwent interbody fusions: 25 underwent LLIF procedures (14 LLIF alone, 11 LLIF with percutaneous screw placement [PSP]) and 14 underwent MI-TLIF. For each operative scenario per spinal level, the surgeon experienced significantly higher (p < 0.035) average radiation exposure (LLIF: 167.9 μSv, LLIF+PSP: 424.2 μSv, MI-TLIF: 397.9 μSv) than other members of the team, followed by the assistant surgeon (LLIF: 149.7 μSv, LLIF+PSP: 242.3 μSv, MI-TLIF: 274.9 μSv). The scrub nurse (LLIF: 15.4 μSv, LLIF+PSP: 125.7 μSv, MI-TLIF: 183.0 μSv) and circulating nurse (LLIF: 1.2 μSv, LLIF+PSP: 9.2 μSv, MI-TLIF: 102.3 μSv) experienced significantly lower exposures. Radiation exposure was not correlated with the patient’s body mass index (p ≥ 0.233); however, it was positively correlated with increasing patient age (p ≤ 0.004).

CONCLUSIONS

Real-time monitoring of radiation exposure is currently feasible and shortens the time between exposure and the availability of information regarding that exposure. A shortened feedback loop that offers more reliable and immediate data would conceivably raise the level of concern for radiation exposure in spinal surgeries and could alter patterns of behavior, leading to decreased exposures. Further studies are ongoing to determine the effect of real-time dosimetry in spinal surgery.

Full access

Gautam Nayar, Daniel J. Blizzard, Timothy Y. Wang, Steven Cook, Adam G. Back, David Vincent and Isaac O. Karikari

OBJECTIVE

A previous study found that ultra-low radiation imaging (ULRI) with image enhancement significantly decreases radiation exposure by roughly 75% for both the patient and operating room personnel during minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) (p < 0.001). However, no clinical data exist on whether this imaging modality negatively impacts patient outcomes. Thus, the goal of this randomized controlled trial was to assess pedicle screw placement accuracy with ULRI with image enhancement compared with conventional, standard-dose fluoroscopy for patients undergoing single-level MIS-TLIF.

METHODS

An institutional review board–approved, prospective internally randomized controlled trial was performed to compare breach rates for pedicle screw placement performed using ULRI with image enhancement versus conventional fluoroscopy. For cannulation and pedicle screw placement, surgery on 1 side (left vs right) was randomly assigned to be performed under ULRI. Screws on the opposite side were placed under conventional fluoroscopy, thereby allowing each patient to serve as his/her own control. In addition to standard intraoperative images to check screw placement, each patient underwent postoperative CT. Three experienced neurosurgeons independently analyzed the images and were blinded as to which imaging modality was used to assist with each screw placement. Screw placement was analyzed for pedicle breach (lateral vs medial and Grade 0 [< 2.0 mm], Grade 1 [2.0–4.0 mm], or Grade 2 [> 4.0 mm]), appropriate screw depth (50%–75% of the vertebral body’s anteroposterior dimension), and appropriate screw angle (within 10° of the pedicle angle). The effective breach rate was calculated as the percentage of screws evaluated as breached > 2.0 mm medially or postoperatively symptomatic.

RESULTS

Twenty-three consecutive patients underwent single-level MIS-TLIF, and their sides were randomly assigned to receive ULRI. No patient had immediate postoperative complications (e.g., neurological decline, need for hardware repositioning). On CT confirmation, 4 screws that had K-wire placement and cannulation under ULRI and screw placement under conventional fluoroscopy showed deviations. There were 2 breaches that deviated medially but both were Grade 0 (< 2.0 mm). Similarly, 2 breaches occurred that were Grade 1 (> 2.0 mm) but both deviated laterally. Therefore, the effective breach rate (breach > 2.0 mm deviated medially) was unchanged in both imaging groups (0% using either ULRI or conventional fluoroscopy; p = 1.00).

CONCLUSIONS

ULRI with image enhancement does not compromise accuracy during pedicle screw placement compared with conventional fluoroscopy while it significantly decreases radiation exposure to both the patient and operating room personnel.