Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: G. Bruce Pike x
Clear All Modify Search
Restricted access

Richard G. Bittar, André Olivier, Abbas F. Sadikot, Frederick Andermann, G. Bruce Pike and David C. Reutens

Object. Accurate identification of eloquent cortex is important to ensure that resective surgery in the region surrounding the central sulcus is performed with minimum risk of permanent neurological deficit. Functional localization has traditionally been accomplished using intraoperative cortical stimulation (ICS). However, this technique suffers from several disadvantages that make the development and validation of noninvasive methods desirable. Functional localization accomplished by activation studies in which positron emission tomography (PET) scanning and the tracer [15O]H2O have been used has been shown to correlate well with the results of ICS. Another noninvasive method for functional localization is functional magnetic resonance (fMR) imaging. We compared the locations of activation peaks obtained in individual patients using fMR and [15O]H2O PET imaging.

Methods. Twenty-six combined PET activation—fMR imaging studies were performed in 11 patients who were admitted for evaluation before undergoing surgery in the region surrounding the central sulcus. The PET scans were obtained using bolus injections of the cerebral blood flow tracer [15O]H2O (10 mCi). Multislice T2*-weighted gradient-echo echoplanar images were acquired using a 1.5-tesla MR imaging system. Activation maps were aligned with anatomical MR images and transformed into stereotactic space, after which the locations of activation peaks obtained using both modalities were compared. The average distance between activation peaks obtained using fMR imaging and those obtained using PET imaging was 7.9 ± 4.8 mm (p > 0.05), with 96% of the peaks being located on either the same or adjacent sulci and gyri. Overlapping of voxels activated by each modality occurred in 92% of the studies. Functional MR imaging failed to activate the primary sensorimotor cortex in one study and produced results that were ambiguous in the clinical setting in three cases.

Conclusions. Overall, fMR imaging produced activation that correlated well with that obtained using PET scanning. Discrepancies between the sites of activation identified using these two techniques may reflect differences in their physiological bases.

Full access

Silvain Bériault, Abbas F. Sadikot, Fahd Alsubaie, Simon Drouin, D. Louis Collins and G. Bruce Pike

Careful trajectory planning on preoperative vascular imaging is an essential step in deep brain stimulation (DBS) to minimize risks of hemorrhagic complications and postoperative neurological deficits. This paper compares 2 MRI methods for visualizing cerebral vasculature and planning DBS probe trajectories: a single data set T1-weighted scan with double-dose gadolinium contrast (T1w-Gd) and a multi–data set protocol consisting of a T1-weighted structural, susceptibility-weighted venography, and time-of-flight angiography (T1w-SWI-TOF). Two neurosurgeons who specialize in neuromodulation surgery planned bilateral STN DBS in 18 patients with Parkinson's disease (36 hemispheres) using each protocol separately. Planned trajectories were then evaluated across all vascular data sets (T1w-Gd, SWI, and TOF) to detect possible intersection with blood vessels along the entire path via an objective vesselness measure. The authors' results show that trajectories planned on T1w-SWI-TOF successfully avoided the cerebral vasculature imaged by conventional T1w-Gd and did not suffer from missing vascular information or imprecise data set registration. Furthermore, with appropriate planning and visualization software, trajectory corridors planned on T1w-SWI-TOF intersected significantly less fine vasculature that was not detected on the T1w-Gd (p < 0.01 within 2 mm and p < 0.001 within 4 mm of the track centerline). The proposed T1w-SWI-TOF protocol comes with minimal effects on the imaging and surgical workflow, improves vessel avoidance, and provides a safe cost-effective alternative to injection of gadolinium contrast.

Restricted access

Robert J. Hamm, Brian R. Pike, Dianne M. O'Dell and Bruce G. Lyeth

✓ The authors have examined the effect of experimental traumatic brain injury on the amnesia produced by the N-methyl-D-aspartate (NMDA) antagonist MK-801. Rats were either subjected to a moderate level of fluid-percussion injury or prepared for injury but not injured (“sham injury”). Nine days following injury or sham injury, the rats were injected either with saline (sham/saline group, nine rats; injured/saline group, nine rats) or with 0.1 mg/kg of MK-801 (sham/MK-801 group, nine rats; injured/MK-801 group, eight rats) 30 minutes before being trained on a passive-avoidance task. Twenty-four hours later, the rats were tested for retention of the passive-avoidance task. Results revealed that the low dose of MK-801 did not significantly affect retention of the passive-avoidance task in the sham-injured group. In injured animals, administration of MK-801 produced a profound amnesia in contrast to the sham-injured animals treated with MK-801 and the injured animals treated with saline. To further investigate this enhanced sensitivity to the amnesic effects of MK-801 exhibited by the injured animals, nine injured and eight sham-injured rats were injected with 0.3 mg/kg of MK-801 15 minutes before injury. Results indicated that the animals treated with MK-801 before injury did not significantly differ from the sham-injured animals in retention of the passive-avoidance task. In addition, test results in the animals treated with MK-801 before injury and reinjected with MK-801 before passive-avoidance testing did not differ from those in untreated injured animals reinjected with saline before passive-avoidance testing. These findings indicate that MK-801 treatment before injury prevented the enhanced sensitivity to MK-801-induced amnesia that follows traumatic brain injury.

Restricted access

Jeffrey D. Atkinson, D. Louis Collins, Gilles Bertrand, Terry M. Peters, G. Bruce Pike and Abbas F. Sadikot

Object. Renewed interest in stereotactic neurosurgery for movement disorders has led to numerous reports of clinical outcomes associated with different treatment strategies. Nevertheless, there is a paucity of autopsy and imaging data that can be used to describe the optimal size and location of lesions or the location of implantable stimulators. In this study the authors correlated the clinical efficacy of stereotactic thalamotomy for tremor with precise anatomical localization by using postoperative magnetic resonance (MR) imaging and an integrated deformable digital atlas of subcortical structures.

Methods. Thirty-one lesions were created by stereotactic thalamotomy in 25 patients with tremor-dominant Parkinson disease. Lesion volume and configuration were evaluated by reviewing early postoperative MR images and were correlated with excellent, good, or fair tremor outcome categories. To allow valid comparisons of configurations of lesions with respect to cytoarchitectonic thalamic boundaries, the MR image obtained in each patient was nonlinearly deformed into a standardized MR imaging space, which included an integrated atlas of the basal ganglia and thalamus. The volume and precise location of lesions associated with different clinical outcomes were compared using nonparametric statistical methods. Probabilistic maps of lesions in each tremor outcome category were generated and compared.

Statistically significant differences in lesion location between excellent and good, and excellent and fair outcome categories were demonstrated. On average, lesions associated with excellent outcomes involved thalamic areas located more posteriorly than sites affected by lesions in the other two outcome groups. Subtraction analysis revealed that lesions correlated with excellent outcomes necessarily involved the interface of the nucleus ventralis intermedius (Vim; also known as the ventral lateral posterior nucleus [VLp]) and the nucleus ventrocaudalis (Vc; also known as the ventral posterior [VP] nucleus). Differences in lesion volume among outcome groups did not achieve statistical significance.

Conclusions. Anatomical evaluation of lesions within a standardized MR image—atlas integrated reference space is a useful method for determining optimal lesion localization. The results of an analysis of probabilistic maps indicates that optimal relief of tremor is associated with lesions involving the Vim (VLp) and the anterior Vc (VP).