Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Fumihiro Nakamura x
  • Refine by Access: all x
Clear All Modify Search
Restricted access

Naotaka Usui, Kiyohito Terada, Koichi Baba, Kazumi Matsuda, Takayasu Tottori, Shuichi Umeoka, Tadahiro Mihara, Fumihiro Nakamura, Keiko Usui, and Yushi Inoue

Object

The aim of this study was to investigate the usefulness of a short train of high-frequency (500 Hz) cortical stimulation to delineate the primary motor cortex (MI), supplementary motor area (SMA), primary somatosensory cortex (SI), supplementary sensory area (SSA), negative motor area (NMA), and supplementary negative motor area (SNMA) in patients with epilepsy who were undergoing functional mapping.

Methods

Seventeen patients were studied, all of whom underwent functional mapping using 50-Hz electrical stimulation. After these clinical evaluations, cortical stimulations with a short train of electrical pulses at 500 Hz were performed through subdural electrodes placed at the MI, SMA, SI, SSA, NMA, and SNMA, which had been identified by 50-Hz stimulation, and surrounding cortical areas, while surface electromyography readings were recorded.

Results

Stimulation of the MI elicited motor evoked potentials (MEPs) in contralateral muscles. Stimulation of the SMA also induced MEPs in contralateral muscles but with longer latencies compared with the MI stimulation. Stimulation of the SMA did not elicit MEPs in ipsilateral muscles. Stimulation of the SI, SSA, NMA, and SNMA did not induce MEPs in any muscle. In one patient, MEPs were elicited without seizure induction by 500-Hz stimulation of the electrodes, whereas a 50-Hz stimulation of the same electrodes induced his habitual seizures.

Conclusions

Extraoperative high-frequency stimulation with MEP monitoring is a useful complementary method for cortical mapping without inducing seizure. Stimulation of SMA induces MEPs in contralateral muscles, with longer latencies compared with the stimulation of MI. This finding may be useful for the differentiation between MI and SMA, especially in the foot motor areas.

Restricted access

Shuichi Umeoka, Kazumi Matsuda, Koichi Baba, Naotaka Usui, Takayasu Tottori, Kiyohito Terada, Keiko Usui, Fumihiro Nakamura, Yushi Inoue, Tateki Fujiwara, and Tadahiro Mihara

Object

To provide greater accuracy in determining the epileptogenic zone during preoperative evaluation, the authors retrospectively examined 123I-iomazenil single-photon emission computed tomography (IMZ SPECT) studies obtained in patients with temporal lobe epilepsy (TLE) in whom there was no evidence of an abnormality on magnetic resonance (MR) images.

Methods

Twelve patients, seven with mesial TLE (MTLE) and five with lateral TLE (LTLE), satisfied the criteria for inclusion in the study. The IMZ SPECT findings in these patients were reviewed retrospectively, and a comparison was made between findings in patients with MTLE and those in patients with LTLE.

Results

The IMZ SPECT studies demonstrated decreased IMZ uptake in the ipsilateral mesial temporal region and the anterobasal temporal lobe in all patients who had MTLE on only one side. On the other hand, IMZ SPECT examinations revealed low IMZ uptake in the ipsilateral lateral temporal lobe in four of five patients with LTLE in whom abnormal findings were restricted to the lateral neocortex. In the remaining patient with LTLE, abnormally low IMZ uptake was found in both mesial and lateral temporal lobes, although pure LTLE was diagnosed by an invasive electroencephalographic evaluation; this patient's habitual seizures continued even after temporal lobectomy, although his mesial structures were spared.

Conclusions

The authors report characteristics of IMZ SPECT findings that differed between patients with MTLE and those with LTLE. The IMZ SPECT examinations proved useful for preoperative evaluation and, to a certain extent, for discrimination between MTLE and LTLE in cases in which MR imaging demonstrated normal findings. The results of this study suggest that IMZ SPECT findings may reflect localization of the epileptogenic zone.