Search Results

You are looking at 1 - 10 of 72 items for

  • Author or Editor: Frank Schwab x
  • All content x
Clear All Modify Search
Restricted access

Antonio A. Faundez and Jean Charles Le Huec

Full access

Michael Akbar, Haidara Almansour, Renaud Lafage, Bassel G. Diebo, Bernd Wiedenhöfer, Frank Schwab, Virginie Lafage, and Wojciech Pepke

OBJECTIVE

The goal of this study was to investigate the impact of thoracic and lumbar alignment on cervical alignment in patients with adolescent idiopathic scoliosis (AIS).

METHODS

Eighty-one patients with AIS who had a Cobb angle > 40° and full-length spine radiographs were included. Radiographs were analyzed using dedicated software to measure pelvic parameters (sacral slope [SS], pelvic incidence [PI], pelvic tilt [PT]); regional parameters (C1 slope, C0–C2 angle, chin-brow vertical angle [CBVA], slope of line of sight [SLS], McRae slope, McGregor slope [MGS], C2–7 [cervical lordosis; CL], C2–7 sagittal vertical axis [SVA], C2–T3, C2–T3 SVA, C2–T1 Harrison measurement [C2–T1 Ha], T1 slope, thoracic kyphosis [TK], lumbar lordosis [LL], and PI-LL mismatch); and global parameters (SVA). Patients were stratified by their lumbar alignment into hyperlordotic (LL > 59.7°) and normolordotic (LL 39.3° to 59.7°) groups and also, based on their thoracic alignment, into hypokyphotic (TK < −33.1°) and normokyphotic (TK −33.1° to −54.9°) groups. Finally, they were grouped based on their global alignment into either an anterior-aligned group or a posterior-aligned group.

RESULTS

The lumbar hyperlordotic group, in comparison to the normolordotic group, had a significantly larger LL, SS, PI (all p < 0.001), and TK (p = 0.014) and a significantly smaller PI-LL mismatch (p = 0.001). Lumbar lordosis had no influence on local cervical parameters.

The thoracic hypokyphotic group had a significantly larger PI-LL mismatch (p < 0.002) and smaller T1 slope (p < 0.001), and was significantly more posteriorly aligned than the normokyphotic group (−15.02 ± 8.04 vs 13.54 ± 6.17 [mean ± SEM], p = 0.006). The patients with hypokyphotic AIS had a kyphotic cervical spine (cervical kyphosis [CK]) (p < 0.001). Furthermore, a posterior-aligned cervical spine in terms of C2–7 SVA (p < 0.006) and C2–T3 SVA (p < 0.001) was observed in the thoracic hypokyphotic group.

Comparing patients in terms of global alignment, the posterior-aligned group had a significantly smaller T1 slope (p < 0.001), without any difference in terms of pelvic, lumbar, and thoracic parameters when compared to the anterior-aligned group. The posterior-aligned group also had a CK (−9.20 ± 1.91 vs 5.21 ± 2.95 [mean ± SEM], p < 0.001) and a more posterior-aligned cervical spine, as measured by C2–7 SVA (p = 0.003) and C2–T3 SVA (p < 0.001).

CONCLUSIONS

Alignment of the cervical spine is closely related to thoracic curvature and global alignment. In patients with AIS, a hypokyphotic thoracic alignment or posterior global alignment was associated with a global cervical kyphosis. Interestingly, upper cervical and cranial parameters were not statistically different in all investigated groups, meaning that the upper cervical spine was not recruited for compensation in order to maintain a horizontal gaze.

Restricted access

Thomas J. Buell, Shay Bess, Ming Xu, Frank J. Schwab, Virginie Lafage, Christopher P. Ames, Christopher I. Shaffrey, and Justin S. Smith

OBJECTIVE

Proximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.

METHODS

Using a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.

RESULTS

PS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.

Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.

CONCLUSIONS

In this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Frank L. Acosta Jr., Themistocles S. Protopsaltis, Benjamin Blondel, Shay Bess, Christopher I. Shaffrey, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher P. Ames, and the International Spine Study Group

This paper is a narrative review of normal cervical alignment, methods for quantifying alignment, and how alignment is associated with cervical deformity, myelopathy, and adjacent-segment disease (ASD), with discussions of health-related quality of life (HRQOL). Popular methods currently used to quantify cervical alignment are discussed including cervical lordosis, sagittal vertical axis, and horizontal gaze with the chin-brow to vertical angle. Cervical deformity is examined in detail as deformities localized to the cervical spine affect, and are affected by, other parameters of the spine in preserving global sagittal alignment. An evolving trend is defining cervical sagittal alignment. Evidence from a few recent studies suggests correlations between radiographic parameters in the cervical spine and HRQOL. Analysis of the cervical regional alignment with respect to overall spinal pelvic alignment is critical. The article details mechanisms by which cervical kyphotic deformity potentially leads to ASD and discusses previous studies that suggest how postoperative sagittal malalignment may promote ASD. Further clinical studies are needed to explore the relationship of cervical malalignment and the development of ASD. Sagittal alignment of the cervical spine may play a substantial role in the development of cervical myelopathy as cervical deformity can lead to spinal cord compression and cord tension. Surgical correction of cervical myelopathy should always take into consideration cervical sagittal alignment, as decompression alone may not decrease cord tension induced by kyphosis. Awareness of the development of postlaminectomy kyphosis is critical as it relates to cervical myelopathy. The future direction of cervical deformity correction should include a comprehensive approach in assessing global cervicalpelvic relationships. Just as understanding pelvic incidence as it relates to lumbar lordosis was crucial in building our knowledge of thoracolumbar deformities, T-1 incidence and cervical sagittal balance can further our understanding of cervical deformities. Other important parameters that account for the cervical-pelvic relationship are surveyed in detail, and it is recognized that all such parameters need to be validated in studies that correlate HRQOL outcomes following cervical deformity correction.

Full access

Shay Bess, Jeffrey E. Harris, Alexander W. L. Turner, Virginie LaFage, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab, and Regis W. Haid Jr.

OBJECTIVE

Proximal junctional kyphosis (PJK) remains problematic following multilevel instrumented spine surgery. Previous biomechanical studies indicate that providing less rigid fixation at the cranial aspect of a long posterior instrumented construct, via transition rods or hooks at the upper instrumented vertebra (UIV), may provide a gradual transition to normal motion and prevent PJK. The purpose of this study was to evaluate the ability of posterior anchored polyethylene tethers to distribute proximal motion segment stiffness in long instrumented spine constructs.

METHODS

A finite element model of a T7–L5 spine segment was created to evaluate range of motion (ROM), intradiscal pressure, pedicle screw loads, and forces in the posterior ligament complex within and adjacent to the proximal terminus of an instrumented spine construct. Six models were tested: 1) intact spine; 2) bilateral, segmental pedicle screws (PS) at all levels from T-11 through L-5; 3) bilateral pedicle screws from T-12 to L-5 and transverse process hooks (TPH) at T-11 (the UIV); 4) pedicle screws from T-11 to L5 and 1-level tethers from T-10 to T-11 (TE-UIV+1); 5) pedicle screws from T-11 to L-5 and 2-level tethers from T-9 to T-11 (TE-UIV+2); and 6) pedicle screws and 3-level tethers from T-8 to T-11 (TE-UIV+3).

RESULTS

Proximal-segment range of motion (ROM) for the PS construct increased from 16% at UIV−1 to 91% at UIV. Proximal-segment ROM for the TPH construct increased from 27% at UIV−1 to 92% at UIV. Posterior tether constructs distributed ROM at the UIV and cranial adjacent segments most effectively; ROM for TE-UIV+1 was 14% of the intact model at UIV−1, 76% at UIV, and 98% at UIV+1. ROM for TE-UIV+2 was 10% at UIV−1, 51% at UIV, 69% at UIV+1, and 97% at UIV+2. ROM for TE-UIV+3 was 7% at UIV−1, 33% at UIV, 45% at UIV+1, and 64% at UIV+2. Proximal segment intradiscal pressures, pedicle screw loads, and ligament forces in the posterior ligament complex were progressively reduced with increasing number of posterior tethers used.

CONCLUSIONS

Finite element analysis of long instrumented spine constructs demonstrated that posterior tethers created a more gradual transition in ROM and adjacent-segment stress from the instrumented to the noninstrumented spine compared with all PS and TPH constructs. Posterior tethers may limit the biomechanical risk factor for PJK; however, further clinical research is needed to evaluate clinical efficacy.

Free access

Carolyn J. Sparrey, Jeannie F. Bailey, Michael Safaee, Aaron J. Clark, Virginie Lafage, Frank Schwab, Justin S. Smith, and Christopher P. Ames

The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.

Restricted access

Christopher P. Ames, Justin S. Smith, Justin K. Scheer, Shay Bess, S. Samuel Bederman, Vedat Deviren, Virginie Lafage, Frank Schwab, and Christopher I. Shaffrey

Sagittal spinal misalignment (SSM) is an established cause of pain and disability. Treating physicians must be familiar with the radiographic findings consistent with SSM. Additionally, the restoration or maintenance of physiological sagittal spinal alignment after reconstructive spinal procedures is imperative to achieve good clinical outcomes. The C-7 plumb line (sagittal vertical axis) has traditionally been used to evaluate sagittal spinal alignment; however, recent data indicate that the measurement of spinopelvic parameters provides a more comprehensive assessment of sagittal spinal alignment. In this review the authors describe the proper analysis of spinopelvic alignment for surgical planning. Online videos supplement the text to better illustrate the key concepts.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Vincent Challier, Renaud Lafage, Bassel G. Diebo, Shaleen Vira, Shian Liu, Jean Marc Vital, Brice Ilharreborde, Themistocles S. Protopsaltis, Thomas J. Errico, Frank J. Schwab, and Virginie Lafage

OBJECT

Previous forceplate studies analyzing the impact of sagittal-plane spinal deformity on pelvic parameters have demonstrated the compensatory mechanisms of pelvis translation in addition to rotation. However, the mechanisms recruited for this pelvic rotation were not assessed. This study aims to analyze the relationship between spinopelvic and lower-extremity parameters and clarify the role of pelvic translation.

METHODS

This is a retrospective study of patients with spinal deformity and full-body EOS images. Patients with only stenosis or low-back pain were excluded. Patients were grouped according to T-1 spinopelvic inclination (T1SPi): sagittal forward (forward, > 0.5°), neutral (−6.3° to 0.5°), or backward (< −6.3°). Pelvic translation was quantified by pelvic shift (sagittal offset between the posterosuperior corner of the sacrum and anterior cortex of the distal tibia), hip extension was measured using the sacrofemoral angle (SFA; the angle formed by the middle of the sacral endplate and the bicoxofemoral axis and the line between the bicoxofemoral axis and the femoral axis), and chin-brow vertical angle (CBVA). Univariate and multivariate analyses were used to compare the parameters and correlation with the Oswestry Disability Index (ODI).

RESULTS

In total, 336 patients (71% female; mean age 57 years; mean body mass index 27 kg/m2) had mean T1SPi values of −8.8°, −3.5°, and 5.9° in the backward, neutral, and forward groups, respectively. There were significant differences in the lower-extremity and spinopelvic parameters between T1SPi groups. The backward group had a normal lumbar lordosis (LL), negative SVA and pelvic shift, and the largest hip extension. Forward patients had a small LL and an increased SVA, with a large pelvic shift creating compensatory knee flexion. Significant correlations existed between lower-limb parameter and pelvic shift, pelvic tilt, T-1 pelvic angle, T1SPi, and sagittal vertical axis (0.3 < r < 0.8; p < 0.001). ODI was significantly correlated with knee flexion and pelvic shift.

CONCLUSIONS

This is the first study to describe full-body alignment in a large population of patients with spinal pathologies. Furthermore, patients categorized based on T1SPi were found to have significant differences in the pelvic shift and lower-limb compensatory mechanisms. Correlations between lower-limb angles, pelvic shift, and ODI were identified. These differences in compensatory mechanisms should be considered when evaluating and planning surgical intervention for adult patients with spinal deformity.

Full access

Ronny L. Rotondo, Wendy Folkert, Norbert J. Liebsch, Yen-Lin E. Chen, Frank X. Pedlow, Joseph H. Schwab, Andrew E. Rosenberg, G. Petur Nielsen, Jackie Szymonifka, Al E. Ferreira, Francis J. Hornicek, and Thomas F. Delaney

OBJECT

Spinal chordomas can have high local recurrence rates after surgery with or without conventional dose radiation therapy (RT). Treatment outcomes and prognostic factors after high-dose proton-based RT with or without surgery were assessed.

METHODS

The authors conducted a retrospective review of 126 treated patients (127 lesions) categorized according to disease status (primary vs recurrent), resection (en bloc vs intralesional), margin status, and RT timing.

RESULTS

Seventy-one sacrococcygeal, 40 lumbar, and 16 thoracic chordomas were analyzed. Mean RT dose was 72.4 GyRBE (relative biological effectiveness). With median follow-up of 41 months, the 5-year overall survival (OS), local control (LC), locoregional control (LRC), and distant control (DC) for the entire cohort were 81%, 62%, 60%, and 77%, respectively. LC for primary chordoma was 68% versus 49% for recurrent lesions (p = 0.058). LC if treated with a component of preoperative RT was 72% versus 54% without this treatment (p = 0.113). Among primary tumors, LC and LRC were higher with preoperative RT, 85% (p = 0.019) and 79% (0.034), respectively, versus 56% and 56% if no preoperative RT was provided. Overall LC was significantly improved with en bloc versus intralesional resection (72% vs 55%, p = 0.016), as was LRC (70% vs 53%, p = 0.035). A trend was noted toward improved LC and LRC for R0/R1 margins and the absence of intralesional procedures.

CONCLUSIONS

High-dose proton-based RT in the management of spinal chordomas can be effective treatment. In patients undergoing surgery, those with primary chordomas undergoing preoperative RT, en bloc resection, and postoperative RT boost have the highest rate of local tumor control; among 28 patients with primary chordomas who underwent preoperative RT and en bloc resection, no local recurrences were seen. Intralesional and incomplete resections are associated with higher local failure rates and are to be avoided.

Restricted access

Frank J. Schwab, Ashish Patel, Christopher I. Shaffrey, Justin S. Smith, Jean-Pierre Farcy, Oheneba Boachie-Adjei, Richard A. Hostin, Robert A. Hart, Behrooz A. Akbarnia, Douglas C. Burton, Shay Bess, and Virginie Lafage

Object

Pedicle subtraction osteotomy (PSO) is a surgical procedure that is frequently performed on patients with sagittal spinopelvic malalignment. Although it allows for substantial spinopelvic realignment, suboptimal realignment outcomes have been reported in up to 33% of patients. The authors' objective in the present study was to identify differences in radiographic profiles and surgical procedures between patients achieving successful versus failed spinopelvic realignment following PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. The authors evaluated 99 cases involving patients who underwent PSO for sagittal spinopelvic malalignment. Because precise cutoffs of acceptable residual postoperative sagittal vertical axis (SVA) values have not been well defined, comparisons were focused between patient groups with a postoperative SVA that could be clearly considered either a success or a failure. Only cases in which the patients had a postoperative SVA of less than 50 mm (successful PSO realignment) or more than 100 mm (failed PSO realignment) were included in the analysis. Radiographic measures and PSO parameters were compared between successful and failed PSO realignments.

Results

Seventy-nine patients met the inclusion criteria. Successful realignment was achieved in 61 patients (77%), while realignment failed in 18 (23%). Patients with failed realignment had larger preoperative SVA (mean 217.9 vs 106.7 mm, p < 0.01), larger pelvic tilt (mean 36.9° vs 30.7°, p < 0.01), larger pelvic incidence (mean 64.2° vs 53.7°, p < 0.01), and greater lumbar lordosis–pelvic incidence mismatch (−47.1° vs −30.9°, p < 0.01) compared with those in whom realignment was successful. Failed and successful realignments were similar regarding the vertebral level of the PSO, the median size of wedge resection 22.0° (interquartile range 16.5°−28.5°), and the numerical changes in pre- and postoperative spinopelvic parameters (p > 0.05).

Conclusions

Patients with failed PSO realignments had significantly larger preoperative spinopelvic deformity than patients in whom realignment was successful. Despite their apparent need for greater correction, the patients in the failed realignment group only received the same amount of correction as those in the successfully realigned patients. A single-level standard PSO may not achieve optimal outcome in patients with high preoperative spinopelvic sagittal malalignment. Patients with large spinopelvic deformities should receive larger osteotomies or additional corrective procedures beyond PSOs to avoid undercorrection.