Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: Frank Schwab x
Clear All Modify Search
Restricted access

Antonio A. Faundez and Jean Charles Le Huec

Restricted access

Thomas J. Buell, Shay Bess, Ming Xu, Frank J. Schwab, Virginie Lafage, Christopher P. Ames, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Proximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.

METHODS

Using a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.

RESULTS

PS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.

Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.

CONCLUSIONS

In this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.

Full access

Michael Akbar, Haidara Almansour, Renaud Lafage, Bassel G. Diebo, Bernd Wiedenhöfer, Frank Schwab, Virginie Lafage and Wojciech Pepke

OBJECTIVE

The goal of this study was to investigate the impact of thoracic and lumbar alignment on cervical alignment in patients with adolescent idiopathic scoliosis (AIS).

METHODS

Eighty-one patients with AIS who had a Cobb angle > 40° and full-length spine radiographs were included. Radiographs were analyzed using dedicated software to measure pelvic parameters (sacral slope [SS], pelvic incidence [PI], pelvic tilt [PT]); regional parameters (C1 slope, C0–C2 angle, chin-brow vertical angle [CBVA], slope of line of sight [SLS], McRae slope, McGregor slope [MGS], C2–7 [cervical lordosis; CL], C2–7 sagittal vertical axis [SVA], C2–T3, C2–T3 SVA, C2–T1 Harrison measurement [C2–T1 Ha], T1 slope, thoracic kyphosis [TK], lumbar lordosis [LL], and PI-LL mismatch); and global parameters (SVA). Patients were stratified by their lumbar alignment into hyperlordotic (LL > 59.7°) and normolordotic (LL 39.3° to 59.7°) groups and also, based on their thoracic alignment, into hypokyphotic (TK < −33.1°) and normokyphotic (TK −33.1° to −54.9°) groups. Finally, they were grouped based on their global alignment into either an anterior-aligned group or a posterior-aligned group.

RESULTS

The lumbar hyperlordotic group, in comparison to the normolordotic group, had a significantly larger LL, SS, PI (all p < 0.001), and TK (p = 0.014) and a significantly smaller PI-LL mismatch (p = 0.001). Lumbar lordosis had no influence on local cervical parameters.

The thoracic hypokyphotic group had a significantly larger PI-LL mismatch (p < 0.002) and smaller T1 slope (p < 0.001), and was significantly more posteriorly aligned than the normokyphotic group (−15.02 ± 8.04 vs 13.54 ± 6.17 [mean ± SEM], p = 0.006). The patients with hypokyphotic AIS had a kyphotic cervical spine (cervical kyphosis [CK]) (p < 0.001). Furthermore, a posterior-aligned cervical spine in terms of C2–7 SVA (p < 0.006) and C2–T3 SVA (p < 0.001) was observed in the thoracic hypokyphotic group.

Comparing patients in terms of global alignment, the posterior-aligned group had a significantly smaller T1 slope (p < 0.001), without any difference in terms of pelvic, lumbar, and thoracic parameters when compared to the anterior-aligned group. The posterior-aligned group also had a CK (−9.20 ± 1.91 vs 5.21 ± 2.95 [mean ± SEM], p < 0.001) and a more posterior-aligned cervical spine, as measured by C2–7 SVA (p = 0.003) and C2–T3 SVA (p < 0.001).

CONCLUSIONS

Alignment of the cervical spine is closely related to thoracic curvature and global alignment. In patients with AIS, a hypokyphotic thoracic alignment or posterior global alignment was associated with a global cervical kyphosis. Interestingly, upper cervical and cranial parameters were not statistically different in all investigated groups, meaning that the upper cervical spine was not recruited for compensation in order to maintain a horizontal gaze.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Frank L. Acosta Jr., Themistocles S. Protopsaltis, Benjamin Blondel, Shay Bess, Christopher I. Shaffrey, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher P. Ames and the International Spine Study Group

This paper is a narrative review of normal cervical alignment, methods for quantifying alignment, and how alignment is associated with cervical deformity, myelopathy, and adjacent-segment disease (ASD), with discussions of health-related quality of life (HRQOL). Popular methods currently used to quantify cervical alignment are discussed including cervical lordosis, sagittal vertical axis, and horizontal gaze with the chin-brow to vertical angle. Cervical deformity is examined in detail as deformities localized to the cervical spine affect, and are affected by, other parameters of the spine in preserving global sagittal alignment. An evolving trend is defining cervical sagittal alignment. Evidence from a few recent studies suggests correlations between radiographic parameters in the cervical spine and HRQOL. Analysis of the cervical regional alignment with respect to overall spinal pelvic alignment is critical. The article details mechanisms by which cervical kyphotic deformity potentially leads to ASD and discusses previous studies that suggest how postoperative sagittal malalignment may promote ASD. Further clinical studies are needed to explore the relationship of cervical malalignment and the development of ASD. Sagittal alignment of the cervical spine may play a substantial role in the development of cervical myelopathy as cervical deformity can lead to spinal cord compression and cord tension. Surgical correction of cervical myelopathy should always take into consideration cervical sagittal alignment, as decompression alone may not decrease cord tension induced by kyphosis. Awareness of the development of postlaminectomy kyphosis is critical as it relates to cervical myelopathy. The future direction of cervical deformity correction should include a comprehensive approach in assessing global cervicalpelvic relationships. Just as understanding pelvic incidence as it relates to lumbar lordosis was crucial in building our knowledge of thoracolumbar deformities, T-1 incidence and cervical sagittal balance can further our understanding of cervical deformities. Other important parameters that account for the cervical-pelvic relationship are surveyed in detail, and it is recognized that all such parameters need to be validated in studies that correlate HRQOL outcomes following cervical deformity correction.

Full access

Bassel G. Diebo, Jonathan H. Oren, Vincent Challier, Renaud Lafage, Emmanuelle Ferrero, Shian Liu, Shaleen Vira, Matthew Adam Spiegel, Bradley Yates Harris, Barthelemy Liabaud, Jensen K. Henry, Thomas J. Errico, Frank J. Schwab and Virginie Lafage

OBJECTIVE

Sagittal malalignment requires higher energy expenditure to maintain an erect posture. Because the clinical impact of sagittal alignment is affected by both the severity of the deformity and recruitment of compensatory mechanisms, it is important to investigate new parameters that reflect both disability level and compensatory mechanisms for all patients. This study investigated the clinical relevance of the global sagittal axis (GSA), a novel measure to evaluate the standing axis of the human body.

METHODS

This is a retrospective review of patients who underwent full-body radiographs and completed health-related quality of life (HRQOL) questionnaires: Oswestry Disability Index (ODI), Scoliosis Research Society–22, EuroQol-5D (EQ-5D), and the visual analog scale for back and leg pain. The GSA was defined as the angle formed by a line from the midpoint of the femoral condyles to the center of C-7, and a line from the midpoint between the femoral condyles to the posterior superior corner of the S-1 sacral endplate. After evaluating the correlation of GSA/HRQOL with sagittal parameters, linear regression models were generated to investigate how ODI and GSA related to radiographic parameters (T-1 pelvic angle, pelvic retroversion, knee flexion, and pelvic posterior translation).

RESULTS

One hundred forty-three patients (mean age 44 years) were included. The GSA correlated significantly with all HRQOL (up to r = 0.6 with EQ-5D) and radiographic parameters (up to r = 0.962 with sagittal vertical axis). Regression between ODI and sagittal radiographic parameters identified the GSA as an independent predictor (r = 0.517, r2 = 0.267; p < 0.001). Analysis of standardized coefficients revealed that when controlling for deformity, the GSA increased with a concurrent decrease in pelvic retroversion (−0.837) and increases in knee flexion (+0.287) and pelvic posterior translation (+0.193).

CONCLUSIONS

The GSA is a simple, novel measure to assess the standing axis of the human body in the sagittal plane. The GSA correlated highly with spinopelvic and lower-extremities sagittal parameters and exhibited remarkable correlations with HRQOL, which exceeded other commonly used parameters.

Full access

Emmanuelle Ferrero, Barthelemy Liabaud, Vincent Challier, Renaud Lafage, Bassel G. Diebo, Shaleen Vira, Shian Liu, Jean Marc Vital, Brice Ilharreborde, Themistocles S. Protopsaltis, Thomas J. Errico, Frank J. Schwab and Virginie Lafage

OBJECT

Previous forceplate studies analyzing the impact of sagittal-plane spinal deformity on pelvic parameters have demonstrated the compensatory mechanisms of pelvis translation in addition to rotation. However, the mechanisms recruited for this pelvic rotation were not assessed. This study aims to analyze the relationship between spinopelvic and lower-extremity parameters and clarify the role of pelvic translation.

METHODS

This is a retrospective study of patients with spinal deformity and full-body EOS images. Patients with only stenosis or low-back pain were excluded. Patients were grouped according to T-1 spinopelvic inclination (T1SPi): sagittal forward (forward, > 0.5°), neutral (−6.3° to 0.5°), or backward (< −6.3°). Pelvic translation was quantified by pelvic shift (sagittal offset between the posterosuperior corner of the sacrum and anterior cortex of the distal tibia), hip extension was measured using the sacrofemoral angle (SFA; the angle formed by the middle of the sacral endplate and the bicoxofemoral axis and the line between the bicoxofemoral axis and the femoral axis), and chin-brow vertical angle (CBVA). Univariate and multivariate analyses were used to compare the parameters and correlation with the Oswestry Disability Index (ODI).

RESULTS

In total, 336 patients (71% female; mean age 57 years; mean body mass index 27 kg/m2) had mean T1SPi values of −8.8°, −3.5°, and 5.9° in the backward, neutral, and forward groups, respectively. There were significant differences in the lower-extremity and spinopelvic parameters between T1SPi groups. The backward group had a normal lumbar lordosis (LL), negative SVA and pelvic shift, and the largest hip extension. Forward patients had a small LL and an increased SVA, with a large pelvic shift creating compensatory knee flexion. Significant correlations existed between lower-limb parameter and pelvic shift, pelvic tilt, T-1 pelvic angle, T1SPi, and sagittal vertical axis (0.3 < r < 0.8; p < 0.001). ODI was significantly correlated with knee flexion and pelvic shift.

CONCLUSIONS

This is the first study to describe full-body alignment in a large population of patients with spinal pathologies. Furthermore, patients categorized based on T1SPi were found to have significant differences in the pelvic shift and lower-limb compensatory mechanisms. Correlations between lower-limb angles, pelvic shift, and ODI were identified. These differences in compensatory mechanisms should be considered when evaluating and planning surgical intervention for adult patients with spinal deformity.

Restricted access

Christopher P. Ames, Justin S. Smith, Justin K. Scheer, Shay Bess, S. Samuel Bederman, Vedat Deviren, Virginie Lafage, Frank Schwab and Christopher I. Shaffrey

Sagittal spinal misalignment (SSM) is an established cause of pain and disability. Treating physicians must be familiar with the radiographic findings consistent with SSM. Additionally, the restoration or maintenance of physiological sagittal spinal alignment after reconstructive spinal procedures is imperative to achieve good clinical outcomes. The C-7 plumb line (sagittal vertical axis) has traditionally been used to evaluate sagittal spinal alignment; however, recent data indicate that the measurement of spinopelvic parameters provides a more comprehensive assessment of sagittal spinal alignment. In this review the authors describe the proper analysis of spinopelvic alignment for surgical planning. Online videos supplement the text to better illustrate the key concepts.

Free access

The comprehensive anatomical spinal osteotomy and anterior column realignment classification

Presented at the 2018 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Juan S. Uribe, Frank Schwab, Gregory M. Mundis Jr., David S. Xu, Jacob Januszewski, Adam S. Kanter, David O. Okonkwo, Serena S. Hu, Deviren Vedat, Robert Eastlack, Pedro Berjano and Praveen V. Mummaneni

OBJECTIVE

Spinal osteotomies and anterior column realignment (ACR) are procedures that allow preservation or restoration of spine lordosis. Variations of these techniques enable different degrees of segmental, regional, and global sagittal realignment. The authors propose a comprehensive anatomical classification system for ACR and its variants based on the level of technical complexity and invasiveness. This serves as a common language and platform to standardize clinical and radiographic outcomes for the utilization of ACR.

METHODS

The proposed classification is based on 6 anatomical grades of ACR, including anterior longitudinal ligament (ALL) release, with varying degrees of posterior column release or osteotomies. Additionally, a surgical approach (anterior, lateral, or posterior) was added. Reliability of the classification was evaluated by an analysis of 16 clinical cases, rated twice by 14 different spine surgeons, and calculation of Fleiss kappa coefficients.

RESULTS

The 6 grades of ACR are as follows: grade A, ALL release with hyperlordotic cage, intact posterior elements; grade 1 (ACR + Schwab grade 1), additional resection of the inferior facet and joint capsule; grade 2 (ACR + Schwab grade 2), additional resection of both superior and inferior facets, interspinous ligament, ligamentum flavum, lamina, and spinous process; grade 3 (ACR + Schwab grade 3), additional adjacent-level 3-column osteotomy including pedicle subtraction osteotomy; grade 4 (ACR + Schwab grade 4), 2-level distal 3-column osteotomy including pedicle subtraction osteotomy and disc space resection; and grade 5 (ACR + Schwab grade 5), complete or partial removal of a vertebral body and both adjacent discs with or without posterior element resection. Intraobserver and interobserver reliability were 97% and 98%, respectively, across the 14-reviewer cohort.

CONCLUSIONS

The proposed anatomical realignment classification provides a consistent description of the various posterior and anterior column release/osteotomies. This reliability study confirmed that the classification is consistent and reproducible across a diverse group of spine surgeons.

Full access

Shay Bess, Jeffrey E. Harris, Alexander W. L. Turner, Virginie LaFage, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab and Regis W. Haid Jr.

OBJECTIVE

Proximal junctional kyphosis (PJK) remains problematic following multilevel instrumented spine surgery. Previous biomechanical studies indicate that providing less rigid fixation at the cranial aspect of a long posterior instrumented construct, via transition rods or hooks at the upper instrumented vertebra (UIV), may provide a gradual transition to normal motion and prevent PJK. The purpose of this study was to evaluate the ability of posterior anchored polyethylene tethers to distribute proximal motion segment stiffness in long instrumented spine constructs.

METHODS

A finite element model of a T7–L5 spine segment was created to evaluate range of motion (ROM), intradiscal pressure, pedicle screw loads, and forces in the posterior ligament complex within and adjacent to the proximal terminus of an instrumented spine construct. Six models were tested: 1) intact spine; 2) bilateral, segmental pedicle screws (PS) at all levels from T-11 through L-5; 3) bilateral pedicle screws from T-12 to L-5 and transverse process hooks (TPH) at T-11 (the UIV); 4) pedicle screws from T-11 to L5 and 1-level tethers from T-10 to T-11 (TE-UIV+1); 5) pedicle screws from T-11 to L-5 and 2-level tethers from T-9 to T-11 (TE-UIV+2); and 6) pedicle screws and 3-level tethers from T-8 to T-11 (TE-UIV+3).

RESULTS

Proximal-segment range of motion (ROM) for the PS construct increased from 16% at UIV−1 to 91% at UIV. Proximal-segment ROM for the TPH construct increased from 27% at UIV−1 to 92% at UIV. Posterior tether constructs distributed ROM at the UIV and cranial adjacent segments most effectively; ROM for TE-UIV+1 was 14% of the intact model at UIV−1, 76% at UIV, and 98% at UIV+1. ROM for TE-UIV+2 was 10% at UIV−1, 51% at UIV, 69% at UIV+1, and 97% at UIV+2. ROM for TE-UIV+3 was 7% at UIV−1, 33% at UIV, 45% at UIV+1, and 64% at UIV+2. Proximal segment intradiscal pressures, pedicle screw loads, and ligament forces in the posterior ligament complex were progressively reduced with increasing number of posterior tethers used.

CONCLUSIONS

Finite element analysis of long instrumented spine constructs demonstrated that posterior tethers created a more gradual transition in ROM and adjacent-segment stress from the instrumented to the noninstrumented spine compared with all PS and TPH constructs. Posterior tethers may limit the biomechanical risk factor for PJK; however, further clinical research is needed to evaluate clinical efficacy.

Free access

Carolyn J. Sparrey, Jeannie F. Bailey, Michael Safaee, Aaron J. Clark, Virginie Lafage, Frank Schwab, Justin S. Smith and Christopher P. Ames

The goal of this review is to discuss the mechanisms of postural degeneration, particularly the loss of lumbar lordosis commonly observed in the elderly in the context of evolution, mechanical, and biological studies of the human spine and to synthesize recent research findings to clinical management of postural malalignment. Lumbar lordosis is unique to the human spine and is necessary to facilitate our upright posture. However, decreased lumbar lordosis and increased thoracic kyphosis are hallmarks of an aging human spinal column. The unique upright posture and lordotic lumbar curvature of the human spine suggest that an understanding of the evolution of the human spinal column, and the unique anatomical features that support lumbar lordosis may provide insight into spine health and degeneration. Considering evolution of the skeleton in isolation from other scientific studies provides a limited picture for clinicians. The evolution and development of human lumbar lordosis highlight the interdependence of pelvic structure and lumbar lordosis. Studies of fossils of human lineage demonstrate a convergence on the degree of lumbar lordosis and the number of lumbar vertebrae in modern Homo sapiens. Evolution and spine mechanics research show that lumbar lordosis is dictated by pelvic incidence, spinal musculature, vertebral wedging, and disc health. The evolution, mechanics, and biology research all point to the importance of spinal posture and flexibility in supporting optimal health. However, surgical management of postural deformity has focused on restoring posture at the expense of flexibility. It is possible that the need for complex and costly spinal fixation can be eliminated by developing tools for early identification of patients at risk for postural deformities through patient history (genetics, mechanics, and environmental exposure) and tracking postural changes over time.